Skip to content
Snippets Groups Projects
Train.py 7.94 KiB
Newer Older
import sys
import random
Franck Dary's avatar
Franck Dary committed
import copy
from Transition import Transition, getMissingLinks, applyTransition
import Features
from Dicts import Dicts
from Util import timeStamp, prettyInt, numParameters, getDevice
Franck Dary's avatar
Franck Dary committed
from Rl import ReplayMemory, selectAction, optimizeModel
import Networks
import Decode
import Config
from conll18_ud_eval import load_conllu, evaluate

################################################################################
def trainMode(debug, filename, type, modelDir, nbIter, batchSize, devFile, silent=False) :
  transitionSet = [Transition(elem) for elem in ["RIGHT", "LEFT", "SHIFT", "REDUCE"]]
  strategy = {"RIGHT" : 1, "SHIFT" : 1, "LEFT" : 0, "REDUCE" : 0}

  sentences = Config.readConllu(filename)

  if type == "oracle" :
    trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent)
    return

Maxime Petit's avatar
Maxime Petit committed
  if type == "rl":
    trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent)
    return

  print("ERROR : unknown type '%s'"%type, file=sys.stderr)
  exit(1)
################################################################################

################################################################################
def extractExamples(ts, strat, config, dicts, debug=False) :
  examples = []

  EOS = Transition("EOS")
  config.moveWordIndex(0)
  moved = True
  while moved :
    missingLinks = getMissingLinks(config)
    candidates = sorted([[trans.getOracleScore(config, missingLinks), trans.name] for trans in ts if trans.appliable(config)])
    if len(candidates) == 0 :
      break
    candidate = candidates[0][1]
    candidateIndex = [trans.name for trans in ts].index(candidate)
    features = Features.extractFeatures(dicts, config)
    example = torch.cat([torch.LongTensor([candidateIndex]), features])
    examples.append(example)
    if debug :
      config.printForDebug(sys.stderr)
      print(str(candidates)+"\n"+("-"*80)+"\n", file=sys.stderr)
    moved = applyTransition(ts, strat, config, candidate)

  EOS.apply(config)

  return examples
################################################################################

################################################################################
def evalModelAndSave(debug, model, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbIter) :
  devScore = ""
  saved = True if bestLoss is None else totalLoss < bestLoss
  bestLoss = totalLoss if bestLoss is None else min(bestLoss, totalLoss)
  if devFile is not None :
    outFilename = modelDir+"/predicted_dev.conllu"
    Decode.decodeMode(debug, devFile, "model", modelDir, model, dicts, open(outFilename, "w"))
    res = evaluate(load_conllu(open(devFile, "r")), load_conllu(open(outFilename, "r")), [])
    UAS = res["UAS"][0].f1
    score = UAS
    saved = True if bestScore is None else score > bestScore
    bestScore = score if bestScore is None else max(bestScore, score)
    devScore = ", Dev : UAS=%.2f"%(UAS)
  if saved :
    torch.save(model, modelDir+"/network.pt")
  print("{} : Epoch {:{}}/{}, loss={:6.2f}{} {}".format(timeStamp(), epoch, len(str(nbIter)), nbIter, totalLoss, devScore, "SAVED" if saved else ""), file=sys.stderr)

  return bestLoss, bestScore
################################################################################

################################################################################
def trainModelOracle(debug, modelDir, filename, nbEpochs, batchSize, devFile, transitionSet, strategy, sentences, silent=False) :
  examples = []
  dicts = Dicts()
  dicts.readConllu(filename, ["FORM", "UPOS"])
  dicts.save(modelDir+"/dicts.json")
  print("%s : Starting to extract examples..."%(timeStamp()), file=sys.stderr)
  for config in sentences :
    examples += extractExamples(transitionSet, strategy, config, dicts, debug)
  print("%s : Extracted %s examples"%(timeStamp(), prettyInt(len(examples), 3)), file=sys.stderr)
  examples = torch.stack(examples)

  network = Networks.BaseNet(dicts, examples[0].size(0)-1, len(transitionSet)).to(getDevice())
  print("%s : Model has %s parameters"%(timeStamp(), prettyInt((numParameters(network)), 3)), file=sys.stderr)
  optimizer = torch.optim.Adam(network.parameters(), lr=0.0001)
  lossFct = torch.nn.CrossEntropyLoss()
  bestLoss = None
  bestScore = None
  for epoch in range(1,nbEpochs+1) :
    network.train()
    examples = examples.index_select(0, torch.randperm(examples.size(0)))
    totalLoss = 0.0
    nbEx = 0
    printInterval = 2000
    advancement = 0
    for batchIndex in range(0,examples.size(0)-batchSize,batchSize) :
      batch = examples[batchIndex:batchIndex+batchSize].to(getDevice())
      targets = batch[:,:1].view(-1)
      inputs = batch[:,1:]
      nbEx += targets.size(0)
      advancement += targets.size(0)
      if not silent and advancement >= printInterval :
        advancement = 0
        print("Curent epoch %6.2f%%"%(100.0*nbEx/examples.size(0)), end="\r", file=sys.stderr)
      outputs = network(inputs)
      loss = lossFct(outputs, targets)
      network.zero_grad()
      loss.backward()
      optimizer.step()
      totalLoss += float(loss)

    bestLoss, bestScore = evalModelAndSave(debug, network, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbEpochs)
################################################################################

Franck Dary's avatar
Franck Dary committed
################################################################################
def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentencesOriginal, silent=False) :

Franck Dary's avatar
Franck Dary committed
  memory = None
Maxime Petit's avatar
Maxime Petit committed
  dicts = Dicts()
  dicts.readConllu(filename, ["FORM", "UPOS"])
  dicts.save(modelDir + "/dicts.json")

Franck Dary's avatar
Franck Dary committed
  policy_net = None
  target_net = None
  optimizer = None
Maxime Petit's avatar
Maxime Petit committed

  bestLoss = None
  bestScore = None

  for epoch in range(1,nbIter+1) :
Franck Dary's avatar
Franck Dary committed
    i = 0
    totalLoss = 0.0
    sentences = copy.deepcopy(sentencesOriginal)
    for sentIndex in range(len(sentences)) :
      if not silent :
        print("Curent epoch %6.2f%%"%(100.0*sentIndex/len(sentences)), end="\r", file=sys.stderr)
      sentence = sentences[sentIndex]
      sentence.moveWordIndex(0)
      state = Features.extractFeaturesPosExtended(dicts, sentence).to(getDevice())
Franck Dary's avatar
Franck Dary committed

      if policy_net is None :
        policy_net = Networks.BaseNet(dicts, state.numel(), len(transitionSet)).to(getDevice())
        target_net = Networks.BaseNet(dicts, state.numel(), len(transitionSet)).to(getDevice())
Franck Dary's avatar
Franck Dary committed
        target_net.load_state_dict(policy_net.state_dict())
        target_net.eval()
        policy_net.train()
        optimizer = torch.optim.Adam(policy_net.parameters(), lr=0.0001)
        print("%s : Model has %s parameters"%(timeStamp(), prettyInt((numParameters(policy_net)), 3)), file=sys.stderr)

Franck Dary's avatar
Franck Dary committed
      while True :
        missingLinks = getMissingLinks(sentence)
        if debug :
          sentence.printForDebug(sys.stderr)
        action = selectAction(policy_net, state, transitionSet, sentence, missingLinks, probaRandom=0.3, probaOracle=0.15)
        if action is None :
          break

        reward = -1.0*action.getOracleScore(sentence, missingLinks)
        reward = torch.FloatTensor([reward]).to(getDevice())
Franck Dary's avatar
Franck Dary committed

        applyTransition(transitionSet, strategy, sentence, action.name)
        newState = Features.extractFeaturesPosExtended(dicts, sentence).to(getDevice())
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
        if memory is None :
          memory = ReplayMemory(1000, state.numel())
        memory.push(state, torch.LongTensor([transitionSet.index(action)]).to(getDevice()), newState, reward)
Franck Dary's avatar
Franck Dary committed
        state = newState
        if i % batchSize == 0 :
          totalLoss += optimizeModel(batchSize, policy_net, target_net, memory, optimizer)
          if i % (2*batchSize) == 0 :
            target_net.load_state_dict(policy_net.state_dict())
            target_net.eval()
            policy_net.train()
        i += 1
    bestLoss, bestScore = evalModelAndSave(debug, policy_net, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbIter)
Franck Dary's avatar
Franck Dary committed
################################################################################