Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RL-Parsing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Franck Dary
RL-Parsing
Commits
7ff12b50
Commit
7ff12b50
authored
3 years ago
by
Franck Dary
Browse files
Options
Downloads
Patches
Plain Diff
Added CUDA support and changed Neural network weight init to avoid Q value explosion in RL
parent
bc57dbba
No related branches found
No related tags found
No related merge requests found
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
Decode.py
+9
-1
9 additions, 1 deletion
Decode.py
Networks.py
+16
-2
16 additions, 2 deletions
Networks.py
Rl.py
+12
-8
12 additions, 8 deletions
Rl.py
Train.py
+9
-9
9 additions, 9 deletions
Train.py
Util.py
+14
-0
14 additions, 0 deletions
Util.py
main.py
+4
-0
4 additions, 0 deletions
main.py
with
64 additions
and
20 deletions
Decode.py
+
9
−
1
View file @
7ff12b50
...
...
@@ -3,6 +3,7 @@ import sys
from
Transition
import
Transition
,
getMissingLinks
,
applyTransition
from
Features
import
extractFeatures
from
Dicts
import
Dicts
from
Util
import
getDevice
import
Config
import
torch
...
...
@@ -48,9 +49,14 @@ def decodeModel(ts, strat, config, network, dicts, debug) :
config
.
moveWordIndex
(
0
)
moved
=
True
network
.
eval
()
currentDevice
=
network
.
currentDevice
()
decodeDevice
=
getDevice
()
network
.
to
(
decodeDevice
)
with
torch
.
no_grad
():
while
moved
:
features
=
extractFeatures
(
dicts
,
config
).
unsqueeze
(
0
)
features
=
extractFeatures
(
dicts
,
config
).
unsqueeze
(
0
)
.
to
(
decodeDevice
)
output
=
torch
.
nn
.
functional
.
softmax
(
network
(
features
),
dim
=
1
)
candidates
=
sorted
([[
ts
[
index
].
appliable
(
config
),
"
%.2f
"
%
float
(
output
[
0
][
index
]),
ts
[
index
].
name
]
for
index
in
range
(
len
(
ts
))])[::
-
1
]
candidates
=
[
cand
[
2
]
for
cand
in
candidates
if
cand
[
0
]]
...
...
@@ -63,6 +69,8 @@ def decodeModel(ts, strat, config, network, dicts, debug) :
moved
=
applyTransition
(
ts
,
strat
,
config
,
candidate
)
EOS
.
apply
(
config
)
network
.
to
(
currentDevice
)
################################################################################
################################################################################
...
...
This diff is collapsed.
Click to expand it.
Networks.py
+
16
−
2
View file @
7ff12b50
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
...
...
@@ -5,18 +6,31 @@ import torch.nn.functional as F
class
BaseNet
(
nn
.
Module
):
def
__init__
(
self
,
dicts
,
inputSize
,
outputSize
)
:
super
().
__init__
()
self
.
dummyParam
=
nn
.
Parameter
(
torch
.
empty
(
0
),
requires_grad
=
False
)
self
.
embSize
=
64
self
.
inputSize
=
inputSize
self
.
outputSize
=
outputSize
self
.
embeddings
=
{
name
:
nn
.
Embedding
(
len
(
dicts
.
dicts
[
name
]),
self
.
embSize
)
for
name
in
dicts
.
dicts
.
keys
()}
for
name
in
dicts
.
dicts
:
self
.
add_module
(
"
emb_
"
+
name
,
nn
.
Embedding
(
len
(
dicts
.
dicts
[
name
]),
self
.
embSize
))
self
.
fc1
=
nn
.
Linear
(
inputSize
*
self
.
embSize
,
1600
)
self
.
fc2
=
nn
.
Linear
(
1600
,
outputSize
)
self
.
dropout
=
nn
.
Dropout
(
0.3
)
self
.
apply
(
self
.
initWeights
)
def
forward
(
self
,
x
)
:
x
=
self
.
dropout
(
self
.
embeddings
[
"
UPOS
"
]
(
x
).
view
(
x
.
size
(
0
),
-
1
))
x
=
self
.
dropout
(
getattr
(
self
,
"
emb_
"
+
"
UPOS
"
)
(
x
).
view
(
x
.
size
(
0
),
-
1
))
x
=
F
.
relu
(
self
.
dropout
(
self
.
fc1
(
x
)))
x
=
self
.
fc2
(
x
)
return
x
def
currentDevice
(
self
)
:
return
self
.
dummyParam
.
device
def
initWeights
(
self
,
m
)
:
if
type
(
m
)
==
nn
.
Linear
:
torch
.
nn
.
init
.
xavier_uniform_
(
m
.
weight
)
m
.
bias
.
data
.
fill_
(
0.01
)
################################################################################
This diff is collapsed.
Click to expand it.
Rl.py
+
12
−
8
View file @
7ff12b50
import
sys
import
random
import
torch
import
torch.nn.functional
as
F
from
Util
import
getDevice
################################################################################
class
ReplayMemory
()
:
def
__init__
(
self
,
capacity
,
stateSize
)
:
self
.
capacity
=
capacity
self
.
states
=
torch
.
zeros
(
capacity
,
stateSize
,
dtype
=
torch
.
long
)
self
.
newStates
=
torch
.
zeros
(
capacity
,
stateSize
,
dtype
=
torch
.
long
)
self
.
actions
=
torch
.
zeros
(
capacity
,
1
,
dtype
=
torch
.
long
)
self
.
rewards
=
torch
.
zeros
(
capacity
,
1
)
self
.
states
=
torch
.
zeros
(
capacity
,
stateSize
,
dtype
=
torch
.
long
,
device
=
getDevice
()
)
self
.
newStates
=
torch
.
zeros
(
capacity
,
stateSize
,
dtype
=
torch
.
long
,
device
=
getDevice
()
)
self
.
actions
=
torch
.
zeros
(
capacity
,
1
,
dtype
=
torch
.
long
,
device
=
getDevice
()
)
self
.
rewards
=
torch
.
zeros
(
capacity
,
1
,
device
=
getDevice
()
)
self
.
position
=
0
self
.
nbPushed
=
0
...
...
@@ -45,7 +47,6 @@ def selectAction(network, state, ts, config, missingLinks, probaRandom, probaOra
candidates
=
sorted
([[
ts
[
index
].
appliable
(
config
),
"
%.2f
"
%
float
(
output
[
0
][
index
]),
ts
[
index
]]
for
index
in
range
(
len
(
ts
))])[::
-
1
]
candidates
=
[
cand
[
2
]
for
cand
in
candidates
if
cand
[
0
]]
return
candidates
[
0
]
if
len
(
candidates
)
>
0
else
None
################################################################################
################################################################################
...
...
@@ -53,11 +54,11 @@ def optimizeModel(batchSize, policy_net, target_net, memory, optimizer) :
gamma
=
0.999
if
len
(
memory
)
<
batchSize
:
return
0.0
states
,
actions
,
nextStates
,
rewards
=
memory
.
sample
(
batchSize
)
predictedQ
=
policy_net
(
states
).
gather
(
1
,
actions
)
nextQ
=
target_net
(
nextStates
).
max
(
1
)[
0
].
unsqueeze
(
0
)
nextQ
=
target_net
(
nextStates
).
max
(
1
)[
0
].
detach
().
unsqueeze
(
0
)
nextQ
=
torch
.
transpose
(
nextQ
,
0
,
1
)
expectedReward
=
gamma
*
nextQ
+
rewards
...
...
@@ -65,8 +66,11 @@ def optimizeModel(batchSize, policy_net, target_net, memory, optimizer) :
loss
=
F
.
smooth_l1_loss
(
predictedQ
,
expectedReward
)
optimizer
.
zero_grad
()
loss
.
backward
()
for
param
in
policy_net
.
parameters
()
:
if
param
.
grad
is
not
None
:
param
.
grad
.
data
.
clamp_
(
-
1
,
1
)
optimizer
.
step
()
return
float
(
loss
)
################################################################################
This diff is collapsed.
Click to expand it.
Train.py
+
9
−
9
View file @
7ff12b50
...
...
@@ -6,7 +6,7 @@ import copy
from
Transition
import
Transition
,
getMissingLinks
,
applyTransition
import
Features
from
Dicts
import
Dicts
from
Util
import
timeStamp
,
prettyInt
,
numParameters
from
Util
import
timeStamp
,
prettyInt
,
numParameters
,
getDevice
from
Rl
import
ReplayMemory
,
selectAction
,
optimizeModel
import
Networks
import
Decode
...
...
@@ -93,7 +93,7 @@ def trainModelOracle(debug, modelDir, filename, nbEpochs, batchSize, devFile, tr
print
(
"
%s : Extracted %s examples
"
%
(
timeStamp
(),
prettyInt
(
len
(
examples
),
3
)),
file
=
sys
.
stderr
)
examples
=
torch
.
stack
(
examples
)
network
=
Networks
.
BaseNet
(
dicts
,
examples
[
0
].
size
(
0
)
-
1
,
len
(
transitionSet
))
network
=
Networks
.
BaseNet
(
dicts
,
examples
[
0
].
size
(
0
)
-
1
,
len
(
transitionSet
))
.
to
(
getDevice
())
print
(
"
%s : Model has %s parameters
"
%
(
timeStamp
(),
prettyInt
((
numParameters
(
network
)),
3
)),
file
=
sys
.
stderr
)
optimizer
=
torch
.
optim
.
Adam
(
network
.
parameters
(),
lr
=
0.0001
)
lossFct
=
torch
.
nn
.
CrossEntropyLoss
()
...
...
@@ -107,7 +107,7 @@ def trainModelOracle(debug, modelDir, filename, nbEpochs, batchSize, devFile, tr
printInterval
=
2000
advancement
=
0
for
batchIndex
in
range
(
0
,
examples
.
size
(
0
)
-
batchSize
,
batchSize
)
:
batch
=
examples
[
batchIndex
:
batchIndex
+
batchSize
]
batch
=
examples
[
batchIndex
:
batchIndex
+
batchSize
]
.
to
(
getDevice
())
targets
=
batch
[:,:
1
].
view
(
-
1
)
inputs
=
batch
[:,
1
:]
nbEx
+=
targets
.
size
(
0
)
...
...
@@ -149,11 +149,11 @@ def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transiti
print
(
"
Curent epoch %6.2f%%
"
%
(
100.0
*
sentIndex
/
len
(
sentences
)),
end
=
"
\r
"
,
file
=
sys
.
stderr
)
sentence
=
sentences
[
sentIndex
]
sentence
.
moveWordIndex
(
0
)
state
=
Features
.
extractFeaturesPosExtended
(
dicts
,
sentence
)
state
=
Features
.
extractFeaturesPosExtended
(
dicts
,
sentence
)
.
to
(
getDevice
())
if
policy_net
is
None
:
policy_net
=
Networks
.
BaseNet
(
dicts
,
state
.
numel
(),
len
(
transitionSet
))
target_net
=
Networks
.
BaseNet
(
dicts
,
state
.
numel
(),
len
(
transitionSet
))
policy_net
=
Networks
.
BaseNet
(
dicts
,
state
.
numel
(),
len
(
transitionSet
))
.
to
(
getDevice
())
target_net
=
Networks
.
BaseNet
(
dicts
,
state
.
numel
(),
len
(
transitionSet
))
.
to
(
getDevice
())
target_net
.
load_state_dict
(
policy_net
.
state_dict
())
target_net
.
eval
()
policy_net
.
train
()
...
...
@@ -169,14 +169,14 @@ def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transiti
break
reward
=
-
1.0
*
action
.
getOracleScore
(
sentence
,
missingLinks
)
reward
=
torch
.
FloatTensor
([
reward
])
reward
=
torch
.
FloatTensor
([
reward
])
.
to
(
getDevice
())
applyTransition
(
transitionSet
,
strategy
,
sentence
,
action
.
name
)
newState
=
Features
.
extractFeaturesPosExtended
(
dicts
,
sentence
)
newState
=
Features
.
extractFeaturesPosExtended
(
dicts
,
sentence
)
.
to
(
getDevice
())
if
memory
is
None
:
memory
=
ReplayMemory
(
1000
,
state
.
numel
())
memory
.
push
(
state
,
torch
.
LongTensor
([
transitionSet
.
index
(
action
)]),
newState
,
reward
)
memory
.
push
(
state
,
torch
.
LongTensor
([
transitionSet
.
index
(
action
)])
.
to
(
getDevice
())
,
newState
,
reward
)
state
=
newState
if
i
%
batchSize
==
0
:
totalLoss
+=
optimizeModel
(
batchSize
,
policy_net
,
target_net
,
memory
,
optimizer
)
...
...
This diff is collapsed.
Click to expand it.
Util.py
+
14
−
0
View file @
7ff12b50
from
datetime
import
datetime
favoriteDevice
=
None
################################################################################
def
setDevice
(
device
)
:
global
favoriteDevice
favoriteDevice
=
device
################################################################################
################################################################################
def
getDevice
()
:
global
favoriteDevice
return
favoriteDevice
################################################################################
################################################################################
def
timeStamp
()
:
return
"
[%s]
"
%
datetime
.
now
().
strftime
(
"
%H:%M:%S
"
)
...
...
This diff is collapsed.
Click to expand it.
main.py
+
4
−
0
View file @
7ff12b50
...
...
@@ -6,6 +6,7 @@ import argparse
import
random
import
torch
import
Util
import
Train
import
Decode
...
...
@@ -35,6 +36,9 @@ if __name__ == "__main__" :
args
=
parser
.
parse_args
()
os
.
makedirs
(
args
.
model
,
exist_ok
=
True
)
Util
.
setDevice
(
torch
.
device
(
"
cuda
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
))
print
(
"
Using device : %s
"
%
Util
.
getDevice
())
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment