Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RL-Parsing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Franck Dary
RL-Parsing
Commits
bc508cdb
Commit
bc508cdb
authored
3 years ago
by
Franck Dary
Browse files
Options
Downloads
Patches
Plain Diff
Code refactoring and cosmetic changes to print
parent
a35103cd
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Train.py
+32
-37
32 additions, 37 deletions
Train.py
Util.py
+12
-0
12 additions, 0 deletions
Util.py
with
44 additions
and
37 deletions
Train.py
+
32
−
37
View file @
bc508cdb
...
...
@@ -6,7 +6,7 @@ import copy
from
Transition
import
Transition
,
getMissingLinks
,
applyTransition
import
Features
from
Dicts
import
Dicts
from
Util
import
timeStamp
from
Util
import
timeStamp
,
prettyInt
,
numParameters
from
Rl
import
ReplayMemory
,
selectAction
,
optimizeModel
import
Networks
import
Decode
...
...
@@ -61,7 +61,28 @@ def extractExamples(ts, strat, config, dicts, debug=False) :
################################################################################
################################################################################
def
trainModelOracle
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
sentences
,
silent
=
False
)
:
def
evalModelAndSave
(
debug
,
model
,
dicts
,
modelDir
,
devFile
,
bestLoss
,
totalLoss
,
bestScore
,
epoch
,
nbIter
)
:
devScore
=
""
saved
=
True
if
bestLoss
is
None
else
totalLoss
<
bestLoss
bestLoss
=
totalLoss
if
bestLoss
is
None
else
min
(
bestLoss
,
totalLoss
)
if
devFile
is
not
None
:
outFilename
=
modelDir
+
"
/predicted_dev.conllu
"
Decode
.
decodeMode
(
debug
,
devFile
,
"
model
"
,
modelDir
,
model
,
dicts
,
open
(
outFilename
,
"
w
"
))
res
=
evaluate
(
load_conllu
(
open
(
devFile
,
"
r
"
)),
load_conllu
(
open
(
outFilename
,
"
r
"
)),
[])
UAS
=
res
[
"
UAS
"
][
0
].
f1
score
=
UAS
saved
=
True
if
bestScore
is
None
else
score
>
bestScore
bestScore
=
score
if
bestScore
is
None
else
max
(
bestScore
,
score
)
devScore
=
"
, Dev : UAS=%.2f
"
%
(
UAS
)
if
saved
:
torch
.
save
(
model
,
modelDir
+
"
/network.pt
"
)
print
(
"
{} : Epoch {:{}}/{}, loss={:6.2f}{} {}
"
.
format
(
timeStamp
(),
epoch
,
len
(
str
(
nbIter
)),
nbIter
,
totalLoss
,
devScore
,
"
SAVED
"
if
saved
else
""
),
file
=
sys
.
stderr
)
return
bestLoss
,
bestScore
################################################################################
################################################################################
def
trainModelOracle
(
debug
,
modelDir
,
filename
,
nbEpochs
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
sentences
,
silent
=
False
)
:
examples
=
[]
dicts
=
Dicts
()
dicts
.
readConllu
(
filename
,
[
"
FORM
"
,
"
UPOS
"
])
...
...
@@ -69,15 +90,16 @@ def trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, tran
print
(
"
%s : Starting to extract examples...
"
%
(
timeStamp
()),
file
=
sys
.
stderr
)
for
config
in
sentences
:
examples
+=
extractExamples
(
transitionSet
,
strategy
,
config
,
dicts
,
debug
)
print
(
"
%s : Extracted %
d
examples
"
%
(
timeStamp
(),
len
(
examples
)),
file
=
sys
.
stderr
)
print
(
"
%s : Extracted %
s
examples
"
%
(
timeStamp
(),
prettyInt
(
len
(
examples
)
,
3
)
),
file
=
sys
.
stderr
)
examples
=
torch
.
stack
(
examples
)
network
=
Networks
.
BaseNet
(
dicts
,
examples
[
0
].
size
(
0
)
-
1
,
len
(
transitionSet
))
print
(
"
%s : Model has %s parameters
"
%
(
timeStamp
(),
prettyInt
((
numParameters
(
network
)),
3
)),
file
=
sys
.
stderr
)
optimizer
=
torch
.
optim
.
Adam
(
network
.
parameters
(),
lr
=
0.0001
)
lossFct
=
torch
.
nn
.
CrossEntropyLoss
()
bestLoss
=
None
bestScore
=
None
for
iter
in
range
(
1
,
nb
Iter
+
1
)
:
for
epoch
in
range
(
1
,
nb
Epochs
+
1
)
:
network
.
train
()
examples
=
examples
.
index_select
(
0
,
torch
.
randperm
(
examples
.
size
(
0
)))
totalLoss
=
0.0
...
...
@@ -99,21 +121,8 @@ def trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, tran
loss
.
backward
()
optimizer
.
step
()
totalLoss
+=
float
(
loss
)
devScore
=
""
saved
=
True
if
bestLoss
is
None
else
totalLoss
<
bestLoss
bestLoss
=
totalLoss
if
bestLoss
is
None
else
min
(
bestLoss
,
totalLoss
)
if
devFile
is
not
None
:
outFilename
=
modelDir
+
"
/predicted_dev.conllu
"
Decode
.
decodeMode
(
debug
,
devFile
,
"
model
"
,
modelDir
,
network
,
dicts
,
open
(
outFilename
,
"
w
"
))
res
=
evaluate
(
load_conllu
(
open
(
devFile
,
"
r
"
)),
load_conllu
(
open
(
outFilename
,
"
r
"
)),
[])
UAS
=
res
[
"
UAS
"
][
0
].
f1
score
=
UAS
saved
=
True
if
bestScore
is
None
else
score
>
bestScore
bestScore
=
score
if
bestScore
is
None
else
max
(
bestScore
,
score
)
devScore
=
"
, Dev : UAS=%.2f
"
%
(
UAS
)
if
saved
:
torch
.
save
(
network
,
modelDir
+
"
/network.pt
"
)
print
(
"
%s : Epoch %d, loss=%.2f%s %s
"
%
(
timeStamp
(),
iter
,
totalLoss
,
devScore
,
"
SAVED
"
if
saved
else
""
),
file
=
sys
.
stderr
)
bestLoss
,
bestScore
=
evalModelAndSave
(
debug
,
network
,
dicts
,
modelDir
,
devFile
,
bestLoss
,
totalLoss
,
bestScore
,
epoch
,
nbEpochs
)
################################################################################
################################################################################
...
...
@@ -130,11 +139,13 @@ def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transiti
target_net
.
eval
()
policy_net
.
train
()
print
(
"
%s : Model has %s parameters
"
%
(
timeStamp
(),
prettyInt
((
numParameters
(
policy_net
)),
3
)),
file
=
sys
.
stderr
)
optimizer
=
torch
.
optim
.
Adam
(
policy_net
.
parameters
(),
lr
=
0.0001
)
bestLoss
=
None
bestScore
=
None
for
epoch
in
range
(
nbIter
)
:
for
epoch
in
range
(
1
,
nbIter
+
1
)
:
i
=
0
totalLoss
=
0.0
sentences
=
copy
.
deepcopy
(
sentencesOriginal
)
...
...
@@ -167,22 +178,6 @@ def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transiti
target_net
.
eval
()
policy_net
.
train
()
i
+=
1
# Fin epoch, compute score and save model
devScore
=
""
saved
=
True
if
bestLoss
is
None
else
totalLoss
<
bestLoss
bestLoss
=
totalLoss
if
bestLoss
is
None
else
min
(
bestLoss
,
totalLoss
)
if
devFile
is
not
None
:
outFilename
=
modelDir
+
"
/predicted_dev.conllu
"
Decode
.
decodeMode
(
debug
,
devFile
,
"
model
"
,
modelDir
,
policy_net
,
dicts
,
open
(
outFilename
,
"
w
"
))
res
=
evaluate
(
load_conllu
(
open
(
devFile
,
"
r
"
)),
load_conllu
(
open
(
outFilename
,
"
r
"
)),
[])
UAS
=
res
[
"
UAS
"
][
0
].
f1
score
=
UAS
saved
=
True
if
bestScore
is
None
else
score
>
bestScore
bestScore
=
score
if
bestScore
is
None
else
max
(
bestScore
,
score
)
devScore
=
"
, Dev : UAS=%.2f
"
%
(
UAS
)
if
saved
:
torch
.
save
(
policy_net
,
modelDir
+
"
/network.pt
"
)
print
(
"
%s : Epoch %d, loss=%.2f%s %s
"
%
(
timeStamp
(),
epoch
,
totalLoss
,
devScore
,
"
SAVED
"
if
saved
else
""
),
file
=
sys
.
stderr
)
bestLoss
,
bestScore
=
evalModelAndSave
(
debug
,
policy_net
,
dicts
,
modelDir
,
devFile
,
bestLoss
,
totalLoss
,
bestScore
,
epoch
,
nbIter
)
################################################################################
This diff is collapsed.
Click to expand it.
Util.py
+
12
−
0
View file @
bc508cdb
...
...
@@ -10,3 +10,15 @@ def isEmpty(value) :
return
value
==
"
_
"
or
value
==
""
################################################################################
################################################################################
def
prettyInt
(
value
,
p
)
:
l
=
[
''
for
_
in
range
((
p
-
len
(
str
(
value
))
%
p
)
%
p
)]
+
list
(
str
(
value
))
l
=
[
""
.
join
(
l
[
i
:
i
+
p
])
for
i
in
range
(
0
,
len
(
l
),
p
)]
return
"
"
.
join
(
l
)
################################################################################
################################################################################
def
numParameters
(
model
)
:
return
sum
(
p
.
numel
()
for
p
in
model
.
parameters
()
if
p
.
requires_grad
)
################################################################################
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment