Skip to content
Snippets Groups Projects
Train.py 5.87 KiB
Newer Older
import sys
import random
from Transition import Transition, getMissingLinks, applyTransition
import Features
from Dicts import Dicts
from Util import timeStamp
Maxime Petit's avatar
Maxime Petit committed
from Rl import ReplayMemory, selectAction
import Networks
import Decode
import Config
from conll18_ud_eval import load_conllu, evaluate

################################################################################
def trainMode(debug, filename, type, modelDir, nbIter, batchSize, devFile, silent=False) :
  transitionSet = [Transition(elem) for elem in ["RIGHT", "LEFT", "SHIFT", "REDUCE"]]
  strategy = {"RIGHT" : 1, "SHIFT" : 1, "LEFT" : 0, "REDUCE" : 0}

  sentences = Config.readConllu(filename)

  if type == "oracle" :
    trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent)
    return

Maxime Petit's avatar
Maxime Petit committed
  if type == "rl":
    trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent)
    return

  print("ERROR : unknown type '%s'"%type, file=sys.stderr)
  exit(1)
################################################################################

################################################################################
def extractExamples(ts, strat, config, dicts, debug=False) :
  examples = []

  EOS = Transition("EOS")
  config.moveWordIndex(0)
  moved = True
  while moved :
    missingLinks = getMissingLinks(config)
    candidates = sorted([[trans.getOracleScore(config, missingLinks), trans.name] for trans in ts if trans.appliable(config)])
    if len(candidates) == 0 :
      break
    candidate = candidates[0][1]
    candidateIndex = [trans.name for trans in ts].index(candidate)
    features = Features.extractFeatures(dicts, config)
    example = torch.cat([torch.LongTensor([candidateIndex]), features])
    examples.append(example)
    if debug :
      config.printForDebug(sys.stderr)
      print(str(candidates)+"\n"+("-"*80)+"\n", file=sys.stderr)
    moved = applyTransition(ts, strat, config, candidate)

  EOS.apply(config)

  return examples
################################################################################

################################################################################
def trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent=False) :
  examples = []
  dicts = Dicts()
  dicts.readConllu(filename, ["FORM", "UPOS"])
  dicts.save(modelDir+"/dicts.json")
  print("%s : Starting to extract examples..."%(timeStamp()), file=sys.stderr)
  for config in sentences :
    examples += extractExamples(transitionSet, strategy, config, dicts, debug)
  print("%s : Extracted %d examples"%(timeStamp(), len(examples)), file=sys.stderr)
  examples = torch.stack(examples)

  network = Networks.BaseNet(dicts, examples[0].size(0)-1, len(transitionSet))
  optimizer = torch.optim.Adam(network.parameters(), lr=0.0001)
  lossFct = torch.nn.CrossEntropyLoss()
  bestLoss = None
  bestScore = None
  for iter in range(1,nbIter+1) :
    network.train()
    examples = examples.index_select(0, torch.randperm(examples.size(0)))
    totalLoss = 0.0
    nbEx = 0
    printInterval = 2000
    advancement = 0
    for batchIndex in range(0,examples.size(0)-batchSize,batchSize) :
      batch = examples[batchIndex:batchIndex+batchSize]
      targets = batch[:,:1].view(-1)
      inputs = batch[:,1:]
      nbEx += targets.size(0)
      advancement += targets.size(0)
      if not silent and advancement >= printInterval :
        advancement = 0
        print("Curent epoch %6.2f%%"%(100.0*nbEx/examples.size(0)), end="\r", file=sys.stderr)
      outputs = network(inputs)
      loss = lossFct(outputs, targets)
      network.zero_grad()
      loss.backward()
      optimizer.step()
      totalLoss += float(loss)
    devScore = ""
    saved = True if bestLoss is None else totalLoss < bestLoss
    bestLoss = totalLoss if bestLoss is None else min(bestLoss, totalLoss)
    if devFile is not None :
      outFilename = modelDir+"/predicted_dev.conllu"
      Decode.decodeMode(debug, devFile, "model", modelDir, network, dicts, open(outFilename, "w"))
      res = evaluate(load_conllu(open(devFile, "r")), load_conllu(open(outFilename, "r")), [])
      UAS = res["UAS"][0].f1
      score = UAS
      saved = True if bestScore is None else score > bestScore
      bestScore = score if bestScore is None else max(bestScore, score)
      devScore = ", Dev : UAS=%.2f"%(UAS)
    if saved :
      torch.save(network, modelDir+"/network.pt")
    print("%s : Epoch %d, loss=%.2f%s %s"%(timeStamp(), iter, totalLoss, devScore, "SAVED" if saved else ""), file=sys.stderr)
################################################################################

Maxime Petit's avatar
Maxime Petit committed
def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent=False) :
  memory = ReplayMemory(1000)
  dicts = Dicts()
  dicts.readConllu(filename, ["FORM", "UPOS"])
  dicts.save(modelDir + "/dicts.json")

  policy_net = Networks.BaseNet(dicts, 13, len(transitionSet))
  target_net = Networks.BaseNet(dicts, 13, len(transitionSet))
  target_net.load_state_dict(policy_net.state_dict())
  target_net.eval()

  optimizer = torch.optim.Adam(policy_net.parameters(), lr=0.0001)
  lossFct = torch.nn.CrossEntropyLoss()
  bestLoss = None
  bestScore = None

  for i_episode in range(nbIter):
    sentence = sentences[i_episode%len(sentences)]
    state = Features.extractFeaturesPosExtended(dicts, sentence)
    notDone = True
    while notDone:
      action = selectAction(policy_net, state, transitionSet)
      print(action, file=sys.stderr)
      notDone = applyTransition(transitionSet, strategy, sentence, action)
      reward = getReward(state, newState)
      reward = torch.tensor([reward])

      if notDone:
        newState = Features.extractFeaturesPosExtended(dicts, sentence)
      else:
        newState = None

      memory.push((state, action, newState, reward))
      state = newState
      optimizeModel()