Skip to content
Snippets Groups Projects
Train.py 10.3 KiB
Newer Older
import sys
import random
Franck Dary's avatar
Franck Dary committed
import copy
from Transition import Transition, getMissingLinks, applyTransition
import Features
from Dicts import Dicts
from Util import timeStamp, prettyInt, numParameters, getDevice
Maxime Petit's avatar
Maxime Petit committed
from Rl import ReplayMemory, selectAction, optimizeModel, rewarding
import Networks
import Decode
import Config
from conll18_ud_eval import load_conllu, evaluate

################################################################################
def trainMode(debug, filename, type, transitionSet, strategy, modelDir, nbIter, batchSize, devFile, bootstrapInterval, incremental, rewardFunc, lr, gamma, probas, silent=False) :
  sentences = Config.readConllu(filename)

  if type == "oracle" :
    trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, bootstrapInterval, incremental, rewardFunc, lr, silent)
Maxime Petit's avatar
Maxime Petit committed
  if type == "rl":
    trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, incremental, rewardFunc, lr, gamma, probas, silent)
Maxime Petit's avatar
Maxime Petit committed
    return

  print("ERROR : unknown type '%s'"%type, file=sys.stderr)
  exit(1)
################################################################################

################################################################################
def extractExamples(debug, ts, strat, config, dicts, network, dynamic) :
  with torch.no_grad() :
    EOS = Transition("EOS")
    config.moveWordIndex(0)
    moved = True
    while moved :
      missingLinks = getMissingLinks(config)
      candidates = sorted([[trans.getOracleScore(config, missingLinks), trans] for trans in ts if trans.appliable(config) and "BACK" not in trans.name])
      if len(candidates) == 0 :
        break
      best = min([cand[0] for cand in candidates])
      candidateOracle = random.sample([cand for cand in candidates if cand[0] == best], 1)[0][1]
      features = network.extractFeatures(dicts, config)
      candidate = candidateOracle
      if debug :
        config.printForDebug(sys.stderr)
        print(str([[c[0],str(c[1])] for c in candidates])+"\n"+("-"*80)+"\n", file=sys.stderr)
        output = network(features.unsqueeze(0).to(getDevice()))
        scores = sorted([[float(output[0][index]), ts[index].appliable(config), ts[index]] for index in range(len(ts))])[::-1]
        candidate = [[cand[0],cand[2]] for cand in scores if cand[1]][0][1]
        if debug :
          print(str(candidate), file=sys.stderr)
      goldIndex = [str(trans) for trans in ts].index(str(candidateOracle))
      example = torch.cat([torch.LongTensor([goldIndex]), features])
      examples.append(example)
      moved = applyTransition(strat, config, candidate, None)
    EOS.apply(config, strat)
  return examples
################################################################################

################################################################################
def evalModelAndSave(debug, model, ts, strat, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbIter, incremental, rewardFunc) :
  devScore = ""
  saved = True if bestLoss is None else totalLoss < bestLoss
  bestLoss = totalLoss if bestLoss is None else min(bestLoss, totalLoss)
  if devFile is not None :
    outFilename = modelDir+"/predicted_dev.conllu"
    Decode.decodeMode(debug, devFile, "model", ts, strat, rewardFunc, modelDir, model, dicts, open(outFilename, "w"))
    res = evaluate(load_conllu(open(devFile, "r")), load_conllu(open(outFilename, "r")), [])
    UAS = res["UAS"][0].f1
    score = UAS
    saved = True if bestScore is None else score > bestScore
    bestScore = score if bestScore is None else max(bestScore, score)
    devScore = ", Dev : UAS=%.2f"%(UAS)
  if saved :
    torch.save(model, modelDir+"/network.pt")
  for out in [sys.stderr, open(modelDir+"/train.log", "w" if epoch == 1 else "a")] :
Franck Dary's avatar
Franck Dary committed
    print("{} : Epoch {:{}}/{}, loss={:6.2f}{} {}".format(timeStamp(), epoch, len(str(nbIter)), nbIter, totalLoss, devScore, "SAVED" if saved else ""), file=out)

  return bestLoss, bestScore
################################################################################

################################################################################
def trainModelOracle(debug, modelDir, filename, nbEpochs, batchSize, devFile, transitionSet, strategy, sentencesOriginal, bootstrapInterval, incremental, rewardFunc, lr, silent=False) :
  dicts.readConllu(filename, ["FORM","UPOS"], 2)
  dicts.addDict("HISTORY", {**{str(t) : (transitionSet.index(t),0) for t in transitionSet}, **{dicts.nullToken : (len(transitionSet),0)}})
  dicts.save(modelDir+"/dicts.json")
  network = Networks.BaseNet(dicts, len(transitionSet), incremental).to(getDevice())
  examples = []
  sentences = copy.deepcopy(sentencesOriginal)
  print("%s : Starting to extract examples..."%(timeStamp()), file=sys.stderr)
  for config in sentences :
    examples += extractExamples(debug, transitionSet, strategy, config, dicts, network, False)
  print("%s : Extracted %s examples"%(timeStamp(), prettyInt(len(examples), 3)), file=sys.stderr)
  examples = torch.stack(examples)

  print("%s : Model has %s parameters"%(timeStamp(), prettyInt((numParameters(network)), 3)), file=sys.stderr)
  optimizer = torch.optim.Adam(network.parameters(), lr=lr)
  lossFct = torch.nn.CrossEntropyLoss()
  bestLoss = None
  bestScore = None
  for epoch in range(1,nbEpochs+1) :
    if bootstrapInterval is not None and epoch > 1 and (epoch-1) % bootstrapInterval == 0 :
      examples = []
      sentences = copy.deepcopy(sentencesOriginal)
      print("%s : Starting to extract dynamic examples..."%(timeStamp()), file=sys.stderr)
      for config in sentences :
        examples += extractExamples(debug, transitionSet, strategy, config, dicts, network, True)
      print("%s : Extracted %s examples"%(timeStamp(), prettyInt(len(examples), 3)), file=sys.stderr)
      examples = torch.stack(examples)

    network.train()
    examples = examples.index_select(0, torch.randperm(examples.size(0)))
    totalLoss = 0.0
    nbEx = 0
    printInterval = 2000
    advancement = 0
    for batchIndex in range(0,examples.size(0)-batchSize,batchSize) :
      batch = examples[batchIndex:batchIndex+batchSize].to(getDevice())
      targets = batch[:,:1].view(-1)
      inputs = batch[:,1:]
      nbEx += targets.size(0)
      advancement += targets.size(0)
      if not silent and advancement >= printInterval :
        advancement = 0
Franck Dary's avatar
Franck Dary committed
        print("Current epoch %6.2f%%"%(100.0*nbEx/examples.size(0)), end="\r", file=sys.stderr)
      outputs = network(inputs)
      loss = lossFct(outputs, targets)
      network.zero_grad()
      loss.backward()
      optimizer.step()
      totalLoss += float(loss)
    bestLoss, bestScore = evalModelAndSave(debug, network, transitionSet, strategy, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbEpochs, incremental, rewardFunc)
################################################################################

Franck Dary's avatar
Franck Dary committed
################################################################################
def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentencesOriginal, incremental, rewardFunc, lr, gamma, probas, silent=False) :
Franck Dary's avatar
Franck Dary committed

Franck Dary's avatar
Franck Dary committed
  memory = None
Maxime Petit's avatar
Maxime Petit committed
  dicts = Dicts()
  dicts.readConllu(filename, ["FORM","UPOS"], 2)
  dicts.addDict("HISTORY", {**{str(t) : (transitionSet.index(t),0) for t in transitionSet}, **{dicts.nullToken : (len(transitionSet),0)}})
Maxime Petit's avatar
Maxime Petit committed
  dicts.save(modelDir + "/dicts.json")

  policy_net = Networks.BaseNet(dicts, len(transitionSet), incremental).to(getDevice())
  target_net = Networks.BaseNet(dicts, len(transitionSet), incremental).to(getDevice())
  target_net.load_state_dict(policy_net.state_dict())
  target_net.eval()
  policy_net.train()
  optimizer = torch.optim.Adam(policy_net.parameters(), lr=lr)
  print("%s : Model has %s parameters"%(timeStamp(), prettyInt((numParameters(policy_net)), 3)), file=sys.stderr)
Maxime Petit's avatar
Maxime Petit committed

  bestLoss = None
  bestScore = None

  sentences = copy.deepcopy(sentencesOriginal)
  nbExByEpoch = sum(map(len,sentences))
  sentIndex = 0

  for epoch in range(1,nbIter+1) :
    probaRandom = round((probas[0][0]-probas[0][2])*math.exp((-epoch+1)/probas[0][1])+probas[0][2], 2)
    probaOracle = round((probas[1][0]-probas[1][2])*math.exp((-epoch+1)/probas[1][1])+probas[1][2], 2)
Franck Dary's avatar
Franck Dary committed
    i = 0
    totalLoss = 0.0
    while True :
      if sentIndex >= len(sentences) :
        sentences = copy.deepcopy(sentencesOriginal)
        random.shuffle(sentences)
        sentIndex = 0

Franck Dary's avatar
Franck Dary committed
      if not silent :
Franck Dary's avatar
Franck Dary committed
        print("Current epoch %6.2f%%"%(100.0*i/nbExByEpoch), end="\r", file=sys.stderr)
Franck Dary's avatar
Franck Dary committed
      sentence = sentences[sentIndex]
      sentence.moveWordIndex(0)
      state = policy_net.extractFeatures(dicts, sentence).to(getDevice())
Franck Dary's avatar
Franck Dary committed
      while True :
        missingLinks = getMissingLinks(sentence)
        if debug :
          sentence.printForDebug(sys.stderr)
        action = selectAction(policy_net, state, transitionSet, sentence, missingLinks, probaRandom, probaOracle)
Franck Dary's avatar
Franck Dary committed
        if action is None :
          break

          print("Selected action : %s"%str(action), file=sys.stderr)
        appliable = action.appliable(sentence)

        reward_ = rewarding(appliable, sentence, action, missingLinks, rewardFunc)
Maxime Petit's avatar
Maxime Petit committed
        reward = torch.FloatTensor([reward_]).to(getDevice())
Franck Dary's avatar
Franck Dary committed

        newState = None
        if appliable :
          applyTransition(strategy, sentence, action, reward_)
          newState = policy_net.extractFeatures(dicts, sentence).to(getDevice())
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
        if memory is None :
          memory = ReplayMemory(5000, state.numel())
        memory.push(state, torch.LongTensor([transitionSet.index(action)]).to(getDevice()), newState, reward)
Franck Dary's avatar
Franck Dary committed
        state = newState
        if i % batchSize == 0 :
          totalLoss += optimizeModel(batchSize, policy_net, target_net, memory, optimizer, gamma)
Franck Dary's avatar
Franck Dary committed
          if i % (1*batchSize) == 0 :
Franck Dary's avatar
Franck Dary committed
            target_net.load_state_dict(policy_net.state_dict())
            target_net.eval()
            policy_net.train()
        i += 1

        if state is None :
          break
      if i >= nbExByEpoch :
        break
      sentIndex += 1
    bestLoss, bestScore = evalModelAndSave(debug, policy_net, transitionSet, strategy, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbIter, incremental, rewardFunc)
Franck Dary's avatar
Franck Dary committed
################################################################################