@@ -132,7 +132,7 @@ It is easy to see that $subsets\in\textsf{ExpF}$.
...
@@ -132,7 +132,7 @@ It is easy to see that $subsets\in\textsf{ExpF}$.
Let $T$ be an \msomi of dimension $d$ from structures over $\ssign$ to
Let $T$ be an \msomi of dimension $d$ from structures over $\ssign$ to
structures over $\tsign$, and let $\phi(x_1,\dots,x_k)$ be an \fo-formula over
structures over $\tsign$, and let $\phi(x_1,\dots,x_k)$ be an \fo-formula over
$\tsign$.
$\tsign$.
We can define an \mso-formula $\psi(\bar X_1,\ldots,\bar X_k)$ such that for any structure $A$ over $\ssign$, $A\models\psi(\bar S_1,\ldots,\bar S_k)$ if and only if $\sem T(A)\models\phi(\bar S_1,\ldots,\bar S_k)$.\footnote{Note that $\bar S_i$is a position of the structure$\sem T(A)$}
We can define an \mso-formula $\psi(\bar X_1,\ldots,\bar X_k)$ such that for any structure $A$ over $\ssign$, $A\models\psi(\bar S_1,\ldots,\bar S_k)$ if and only if $\sem T(A)\models\phi(\bar S_1,\ldots,\bar S_k)$.\footnote{Note that $\bar S_i$denotes either a tuple of sets of positions of $A$, or a position of$\sem T(A)$}
\end{theorem}
\end{theorem}
\begin{proof}
\begin{proof}
...
@@ -160,10 +160,11 @@ Does $\msot\circ \msomi \subseteq \msomi$ hold? Using Krohn-Rhodes theorem of Mi
...
@@ -160,10 +160,11 @@ Does $\msot\circ \msomi \subseteq \msomi$ hold? Using Krohn-Rhodes theorem of Mi
\begin{question}
\begin{question}
Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O(|u|+|f(u)|)$ ?
Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O\big(|u|+|f(u)|\big)$ ?
\end{question}
\end{question}
\subsection{Closure properties}
\subsection{Closure properties}
\subsubsection{Postcomposition by \foi}
\begin{theorem}
\begin{theorem}
$\foi\ \circ\msomi\ =\msomi$
$\foi\ \circ\msomi\ =\msomi$
\end{theorem}
\end{theorem}
...
@@ -178,6 +179,16 @@ From the backward translation theorem.
...
@@ -178,6 +179,16 @@ From the backward translation theorem.
\end{proof}
\end{proof}
\subsubsection{Precomposition by \msot}
\begin{theorem}
$\msomi\ \circ\msot\ =\msomi$
\end{theorem}
\begin{proof}
From the usual proof of closure under composition of \msot.
\end{proof}
\subsection{\Expreg functions of polynomial growth}
\subsection{\Expreg functions of polynomial growth}
...
@@ -195,7 +206,7 @@ From the backward translation theorem.
...
@@ -195,7 +206,7 @@ From the backward translation theorem.
\section{The case of the successor}
\section{The case of the successor}
\begin{theorem}
\begin{theorem}
\msomi with successor is equivalent to \dlin
\msomi with successor is equivalent to \dlin reductions.