@@ -95,7 +95,7 @@ Given two relational signatures $\ssign,\tsign$, an \mso monadic interpretation
\end{itemize}
where $\bar X$ denotes a $d$-tuple of monadic variables.
Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\barX\mid\ A \models\phi_U(\barX)}$, given $R\in\tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\barX_1,\ldots,\barX_k}\in U^k\mid\ \phi_R(\barX_1,\ldots,\barX_k)}$.
Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\barS\mid\ A \models\phi_U(\barS)}$, given $R\in\tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\barS_1,\ldots,\barS_k}\in U^k\mid\ \phi_R(\barS_1,\ldots,\barS_k)}$.
%Given tuples $\bar X_1,\ldots,\bar X_l$, we extend $\sem T$ by $\sem T(A,\bar X_1,\ldots,\bar X_l)=B,\set{\bar X_1},\ldots,\set{\bar X_l}$.
\fomi is defined by restricting formulas to be in \fo.