diff --git a/main.tex b/main.tex index 5fbc2c0cd6126b3bd705186044eb5f610c5f8ba9..a87b03ed8db2c56eeceba963cfdf40f51d16629d 100644 --- a/main.tex +++ b/main.tex @@ -20,7 +20,7 @@ \newcommand{\sst}{\textsf{SST}\xspace} \newcommand{\mtt}{\textsf{MTT}\xspace} -\newcommand{\dlin}{\textsc{DLinSpace}} +\newcommand{\dlin}{\textsc{DLinSpace}\xspace} \newcommand{\ssign}{\mathfrak{S}} \newcommand{\tsign}{\mathfrak{T}} @@ -132,7 +132,7 @@ It is easy to see that $subsets\in\textsf{ExpF}$. Let $T$ be an \msomi of dimension $d$ from structures over $\ssign$ to structures over $\tsign$, and let $\phi(x_1,\dots,x_k)$ be an \fo-formula over $\tsign$. - We can define an \mso-formula $\psi(\bar X_1,\ldots,\bar X_k)$ such that for any structure $A$ over $\ssign$, $A\models\psi(\bar S_1,\ldots,\bar S_k) $ if and only if $\sem T(A)\models \phi(\bar S_1,\ldots,\bar S_k)$.\footnote{Note that $\bar S_i$ is a position of the structure $\sem T(A)$} + We can define an \mso-formula $\psi(\bar X_1,\ldots,\bar X_k)$ such that for any structure $A$ over $\ssign$, $A\models\psi(\bar S_1,\ldots,\bar S_k) $ if and only if $\sem T(A)\models \phi(\bar S_1,\ldots,\bar S_k)$.\footnote{Note that $\bar S_i$ denotes either a tuple of sets of positions of $A$, or a position of $\sem T(A)$} \end{theorem} \begin{proof} @@ -160,10 +160,11 @@ Does $\msot\circ \msomi \subseteq \msomi$ hold? Using Krohn-Rhodes theorem of Mi \begin{question} -Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O(|u|+|f(u)|)$ ? +Given a (fixed) \msomi realizing $f$, can one compute the image of a word $u$ in time $O \big( |u|+|f(u)|\big)$ ? \end{question} \subsection{Closure properties} +\subsubsection{Postcomposition by \foi} \begin{theorem} $\foi\ \circ \msomi\ = \msomi$ \end{theorem} @@ -178,6 +179,16 @@ From the backward translation theorem. \end{proof} +\subsubsection{Precomposition by \msot} +\begin{theorem} + $\msomi\ \circ \msot\ = \msomi$ +\end{theorem} + +\begin{proof} + From the usual proof of closure under composition of \msot. +\end{proof} + + \subsection{\Expreg functions of polynomial growth} @@ -195,7 +206,7 @@ From the backward translation theorem. \section{The case of the successor} \begin{theorem} -\msomi with successor is equivalent to \dlin +\msomi with successor is equivalent to \dlin reductions. \end{theorem} \begin{proof}