From 09ce896840273f871b2ba4dc517cf9d3930f732a Mon Sep 17 00:00:00 2001
From: "nathan.lhote" <nathan.lhote@lis-lab.fr>
Date: Thu, 23 Jun 2022 18:23:54 +0200
Subject: [PATCH] m

---
 main.tex | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/main.tex b/main.tex
index a0f6a36..5fbc2c0 100644
--- a/main.tex
+++ b/main.tex
@@ -95,7 +95,7 @@ Given two relational signatures $\ssign,\tsign$, an \mso monadic interpretation
 \end{itemize}
 where $\bar X$ denotes a $d$-tuple of monadic variables.
 
-Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar X\mid\ A \models \phi_U(\bar X)}$, given $R\in \tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar X_1,\ldots,\bar X_k}\in U^k\mid\ \phi_R(\bar X_1,\ldots,\bar X_k)}$.
+Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar S\mid\ A \models \phi_U(\bar S)}$, given $R\in \tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar S_1,\ldots,\bar S_k}\in U^k\mid\ \phi_R(\bar S_1,\ldots,\bar S_k)}$.
 %Given tuples $\bar X_1,\ldots,\bar X_l$, we extend $\sem T$ by $\sem T(A,\bar X_1,\ldots,\bar X_l)=B,\set{\bar X_1},\ldots,\set{\bar X_l}$.
 
 \fomi is defined by restricting formulas to be in \fo.
-- 
GitLab