diff --git a/main.tex b/main.tex index a0f6a369f99bcdcf33c2ebc17f9562fefbb73f3c..5fbc2c0cd6126b3bd705186044eb5f610c5f8ba9 100644 --- a/main.tex +++ b/main.tex @@ -95,7 +95,7 @@ Given two relational signatures $\ssign,\tsign$, an \mso monadic interpretation \end{itemize} where $\bar X$ denotes a $d$-tuple of monadic variables. -Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar X\mid\ A \models \phi_U(\bar X)}$, given $R\in \tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar X_1,\ldots,\bar X_k}\in U^k\mid\ \phi_R(\bar X_1,\ldots,\bar X_k)}$. +Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(B)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar S\mid\ A \models \phi_U(\bar S)}$, given $R\in \tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar S_1,\ldots,\bar S_k}\in U^k\mid\ \phi_R(\bar S_1,\ldots,\bar S_k)}$. %Given tuples $\bar X_1,\ldots,\bar X_l$, we extend $\sem T$ by $\sem T(A,\bar X_1,\ldots,\bar X_l)=B,\set{\bar X_1},\ldots,\set{\bar X_l}$. \fomi is defined by restricting formulas to be in \fo.