Skip to content
Snippets Groups Projects
Commit 63817ce0 authored by Luc Giffon's avatar Luc Giffon
Browse files

add the tensorflow submodule to scikitluc so slight changes in imports

parent 6a2c1155
No related branches found
No related tags found
No related merge requests found
......@@ -13,8 +13,8 @@ Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Son
import tensorflow as tf
import numpy as np
import skluc.mldatasets as dataset
from skluc.tensorflow.utils import convolution_mnist, classification_mnist, batch_generator
from skluc.tensorflow.kernel_approximation import fastfood_layer
from skluc.tensorflow_.utils import convolution_mnist, classification_mnist, batch_generator
from skluc.tensorflow_.kernel_approximation import fastfood_layer
tf.logging.set_verbosity(tf.logging.ERROR)
......
......@@ -25,12 +25,12 @@ Options:
import tensorflow as tf
import numpy as np
from skluc.tensorflow.kernel_approximation.nystrom_approx import nystrom_layer
from skluc.tensorflow.utils import inference_mnist, batch_generator, convolution_mnist, classification_mnist, \
from skluc.tensorflow_.kernel_approximation.nystrom_layer import nystrom_layer
from skluc.tensorflow_.utils import inference_mnist, batch_generator, convolution_mnist, classification_mnist, \
inference_cifar10, convolution_cifar, classification_cifar
import skluc.mldatasets as dataset
from skluc.tensorflow.kernel_approximation import fastfood_layer
from skluc.tensorflow_.kernel_approximation import fastfood_layer
import docopt
......@@ -113,7 +113,7 @@ def fct_deepfriedconvnet(X_train, Y_train, data_shape, output_dim, dataname, bat
# Representation layer
h_conv = convolution(x_image)
out_fc = tf.nn.relu(fastfood_layer(h_conv, sigma, nbr_stack=fastfood_stack_number, trainable=True)) # 84% accuracy (conv) | 59% accuracy (noconv)
out_fc = fastfood_layer(h_conv, sigma, nbr_stack=fastfood_stack_number, trainable=True) # 84% accuracy (conv) | 59% accuracy (noconv
# out_fc = fully_connected(h_conv) # 95% accuracy
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=1)) # 83% accuracy (conv) | 56% accuracy (noconv)
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2))
......
......@@ -21,8 +21,8 @@ import skluc.mldatasets as dataset
from sklearn.kernel_approximation import Nystroem
from sklearn.svm import SVC
from skluc.tensorflow.kernel_approximation.nystrom_approx import nystrom_layer
from skluc.tensorflow.utils import batch_generator, classification_mnist
from skluc.tensorflow_.kernel_approximation.nystrom_layer import nystrom_layer
from skluc.tensorflow_.utils import batch_generator, classification_mnist
tf.logging.set_verbosity(tf.logging.ERROR)
......
......@@ -3,9 +3,9 @@ import numpy as np
from sklearn.metrics.pairwise import rbf_kernel
import skluc.mldatasets as dataset
from skluc.tensorflow.utils import fully_connected, get_next_batch, tf_op, conv_relu_pool
from skluc.tensorflow_.utils import fully_connected, get_next_batch, tf_op, conv_relu_pool
from skluc.utils import time_fct
from skluc.tensorflow.kernel_approximation.nystrom_approx import tf_rbf_kernel
from skluc.tensorflow_.kernel_approximation.nystrom_layer import tf_rbf_kernel
tf.logging.set_verbosity(tf.logging.ERROR)
......@@ -83,4 +83,3 @@ if __name__ == '__main__':
print("{}:\t{:.4f}s".format(key, value()))
tf.reset_default_graph()
# todo renome ce fichier
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment