Skip to content
Snippets Groups Projects
Commit 6a2c1155 authored by Luc Giffon's avatar Luc Giffon
Browse files

import changes relative to skluc

parent 948096c0
No related branches found
No related tags found
No related merge requests found
...@@ -13,8 +13,8 @@ Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Son ...@@ -13,8 +13,8 @@ Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Son
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
import skluc.mldatasets as dataset import skluc.mldatasets as dataset
from skluc.neural_networks import convolution_mnist, classification_mnist, batch_generator from skluc.tensorflow.utils import convolution_mnist, classification_mnist, batch_generator
from skluc.kernel_approximation.fasfood_layer import fast_food from skluc.tensorflow.kernel_approximation import fastfood_layer
tf.logging.set_verbosity(tf.logging.ERROR) tf.logging.set_verbosity(tf.logging.ERROR)
...@@ -54,7 +54,7 @@ if __name__ == '__main__': ...@@ -54,7 +54,7 @@ if __name__ == '__main__':
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2)) # out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2))
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2, trainable=True)) # out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2, trainable=True))
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, trainable=True)) # 84% accuracy (conv) | 59% accuracy (noconv) # out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, trainable=True)) # 84% accuracy (conv) | 59% accuracy (noconv)
out_fc = fast_food(h_conv, SIGMA, nbr_stack=1, trainable=True) # 84% accuracy (conv) | 59% accuracy (noconv) out_fc = fastfood_layer(h_conv, SIGMA, nbr_stack=1, trainable=True) # 84% accuracy (conv) | 59% accuracy (noconv)
# out_fc = random_features(h_conv, SIGMA) # 82% accuracy (conv) | 47% accuracy (noconv) # out_fc = random_features(h_conv, SIGMA) # 82% accuracy (conv) | 47% accuracy (noconv)
# classification # classification
......
...@@ -25,12 +25,12 @@ Options: ...@@ -25,12 +25,12 @@ Options:
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
from skluc.kernel_approximation.nystrom.nystrom_approx import nystrom_layer from skluc.tensorflow.kernel_approximation.nystrom_approx import nystrom_layer
from skluc.neural_networks import inference_mnist, batch_generator, convolution_mnist, classification_mnist, \ from skluc.tensorflow.utils import inference_mnist, batch_generator, convolution_mnist, classification_mnist, \
inference_cifar10, convolution_cifar, classification_cifar inference_cifar10, convolution_cifar, classification_cifar
import skluc.mldatasets as dataset import skluc.mldatasets as dataset
from skluc.kernel_approximation.fasfood_layer import fast_food from skluc.tensorflow.kernel_approximation import fastfood_layer
import docopt import docopt
...@@ -113,7 +113,7 @@ def fct_deepfriedconvnet(X_train, Y_train, data_shape, output_dim, dataname, bat ...@@ -113,7 +113,7 @@ def fct_deepfriedconvnet(X_train, Y_train, data_shape, output_dim, dataname, bat
# Representation layer # Representation layer
h_conv = convolution(x_image) h_conv = convolution(x_image)
out_fc = tf.nn.relu(fast_food(h_conv, sigma, nbr_stack=fastfood_stack_number, trainable=True)) # 84% accuracy (conv) | 59% accuracy (noconv) out_fc = tf.nn.relu(fastfood_layer(h_conv, sigma, nbr_stack=fastfood_stack_number, trainable=True)) # 84% accuracy (conv) | 59% accuracy (noconv)
# out_fc = fully_connected(h_conv) # 95% accuracy # out_fc = fully_connected(h_conv) # 95% accuracy
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=1)) # 83% accuracy (conv) | 56% accuracy (noconv) # out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=1)) # 83% accuracy (conv) | 56% accuracy (noconv)
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2)) # out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2))
......
...@@ -21,8 +21,8 @@ import skluc.mldatasets as dataset ...@@ -21,8 +21,8 @@ import skluc.mldatasets as dataset
from sklearn.kernel_approximation import Nystroem from sklearn.kernel_approximation import Nystroem
from sklearn.svm import SVC from sklearn.svm import SVC
from skluc.kernel_approximation.nystrom.nystrom_approx import nystrom_layer from skluc.tensorflow.kernel_approximation.nystrom_approx import nystrom_layer
from skluc.neural_networks import batch_generator, classification_mnist from skluc.tensorflow.utils import batch_generator, classification_mnist
tf.logging.set_verbosity(tf.logging.ERROR) tf.logging.set_verbosity(tf.logging.ERROR)
......
...@@ -3,9 +3,9 @@ import numpy as np ...@@ -3,9 +3,9 @@ import numpy as np
from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import rbf_kernel
import skluc.mldatasets as dataset import skluc.mldatasets as dataset
from skluc.neural_networks import fully_connected, get_next_batch, tf_op, conv_relu_pool from skluc.tensorflow.utils import fully_connected, get_next_batch, tf_op, conv_relu_pool
from skluc.utils import time_fct from skluc.utils import time_fct
from skluc.kernel_approximation.nystrom.nystrom_approx import tf_rbf_kernel from skluc.tensorflow.kernel_approximation.nystrom_approx import tf_rbf_kernel
tf.logging.set_verbosity(tf.logging.ERROR) tf.logging.set_verbosity(tf.logging.ERROR)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment