Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
deepFriedConvnet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
deepFriedConvnet
Commits
0d9edeb1
Commit
0d9edeb1
authored
7 years ago
by
Luc Giffon
Browse files
Options
Downloads
Patches
Plain Diff
support of the mnist dataset comming from scikit-luc
parent
1aabf81f
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main/deepfriedConvnetMnist.py
+47
-14
47 additions, 14 deletions
main/deepfriedConvnetMnist.py
with
47 additions
and
14 deletions
main/deepfriedConvnetMnist.py
+
47
−
14
View file @
0d9edeb1
...
@@ -12,11 +12,28 @@ Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Son
...
@@ -12,11 +12,28 @@ Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Son
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
import
numpy
as
np
import
skluc.mldatasets
as
dataset
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
ERROR
)
import
time
as
t
import
time
as
t
from
tensorflow.examples.tutorials.mnist
import
input_data
from
sklearn.preprocessing
import
LabelBinarizer
mnist
=
input_data
.
read_data_sets
(
'
MNIST_data
'
,
one_hot
=
True
)
enc
=
LabelBinarizer
()
mnist
=
dataset
.
MnistDataset
()
mnist
=
mnist
.
load
()
X_train
,
Y_train
=
mnist
[
"
train
"
]
X_train
=
np
.
array
(
X_train
/
255
)
enc
.
fit
(
Y_train
)
Y_train
=
np
.
array
(
enc
.
transform
(
Y_train
))
X_test
,
Y_test
=
mnist
[
"
test
"
]
X_test
=
np
.
array
(
X_test
/
255
)
Y_test
=
np
.
array
(
enc
.
transform
(
Y_test
))
X_train
=
X_train
.
astype
(
np
.
float32
)
X_test
=
X_test
.
astype
(
np
.
float32
)
Y_train
=
Y_train
.
astype
(
np
.
float32
)
Y_test
=
Y_test
.
astype
(
np
.
float32
)
from
fasfood_layer
import
fast_food
from
fasfood_layer
import
fast_food
...
@@ -105,10 +122,25 @@ def fully_connected(conv_out):
...
@@ -105,10 +122,25 @@ def fully_connected(conv_out):
return
h_fc1
return
h_fc1
def
mnist_dims
():
def
get_next_batch
(
full_set
,
batch_nbr
,
batch_size
):
input_dim
=
int
(
mnist
.
train
.
images
.
shape
[
1
])
"""
output_dim
=
int
(
mnist
.
train
.
labels
.
shape
[
1
])
Return the next batch of a dataset.
return
input_dim
,
output_dim
This function assumes that all the previous batches of this dataset have been taken with the same size.
:param full_set: the full dataset from which the batch will be taken
:param batch_nbr: the number of the batch
:param batch_size: the size of the batch
:return:
"""
index_start
=
(
batch_nbr
*
batch_size
)
%
full_set
.
shape
[
0
]
index_stop
=
((
batch_nbr
+
1
)
*
batch_size
)
%
full_set
.
shape
[
0
]
if
index_stop
>
index_start
:
return
full_set
[
index_start
:
index_stop
]
else
:
part1
=
full_set
[
index_start
:]
part2
=
full_set
[:
index_stop
]
return
np
.
vstack
((
part1
,
part2
))
if
__name__
==
'
__main__
'
:
if
__name__
==
'
__main__
'
:
...
@@ -116,8 +148,8 @@ if __name__ == '__main__':
...
@@ -116,8 +148,8 @@ if __name__ == '__main__':
print
(
"
Sigma = {}
"
.
format
(
SIGMA
))
print
(
"
Sigma = {}
"
.
format
(
SIGMA
))
with
tf
.
Graph
().
as_default
():
with
tf
.
Graph
().
as_default
():
# todo parametrize datset
# todo parametrize dat
a
set
input_dim
,
output_dim
=
mnist_dims
()
input_dim
,
output_dim
=
X_train
.
shape
[
1
],
Y_train
.
shape
[
1
]
x
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
input_dim
],
name
=
"
x
"
)
x
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
input_dim
],
name
=
"
x
"
)
y_
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
output_dim
],
name
=
"
labels
"
)
y_
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
output_dim
],
name
=
"
labels
"
)
...
@@ -181,9 +213,10 @@ if __name__ == '__main__':
...
@@ -181,9 +213,10 @@ if __name__ == '__main__':
sess
.
run
(
init
)
sess
.
run
(
init
)
# actual learning
# actual learning
started
=
t
.
time
()
started
=
t
.
time
()
for
i
in
range
(
20000
):
for
i
in
range
(
1100
):
batch
=
mnist
.
train
.
next_batch
(
64
)
X_batch
=
get_next_batch
(
X_train
,
i
,
64
)
feed_dict
=
{
x
:
batch
[
0
],
y_
:
batch
[
1
],
keep_prob
:
0.5
}
Y_batch
=
get_next_batch
(
Y_train
,
i
,
64
)
feed_dict
=
{
x
:
X_batch
,
y_
:
Y_batch
,
keep_prob
:
0.5
}
# le _ est pour capturer le retour de "train_optimizer" qu'il faut appeler
# le _ est pour capturer le retour de "train_optimizer" qu'il faut appeler
# pour calculer le gradient mais dont l'output ne nous interesse pas
# pour calculer le gradient mais dont l'output ne nous interesse pas
_
,
loss
=
sess
.
run
([
train_optimizer
,
cross_entropy
],
feed_dict
=
feed_dict
)
_
,
loss
=
sess
.
run
([
train_optimizer
,
cross_entropy
],
feed_dict
=
feed_dict
)
...
@@ -191,12 +224,12 @@ if __name__ == '__main__':
...
@@ -191,12 +224,12 @@ if __name__ == '__main__':
print
(
'
step {}, loss {} (with dropout)
'
.
format
(
i
,
loss
))
print
(
'
step {}, loss {} (with dropout)
'
.
format
(
i
,
loss
))
summary_str
=
sess
.
run
(
merged_summary
,
feed_dict
=
feed_dict
)
summary_str
=
sess
.
run
(
merged_summary
,
feed_dict
=
feed_dict
)
summary_writer
.
add_summary
(
summary_str
,
i
)
summary_writer
.
add_summary
(
summary_str
,
i
)
stoped
=
t
.
time
()
stoped
=
t
.
time
()
accuracy
,
preds
=
sess
.
run
([
accuracy
,
predictions
],
feed_dict
=
{
accuracy
,
preds
=
sess
.
run
([
accuracy
,
predictions
],
feed_dict
=
{
x
:
mnist
.
test
.
images
,
y_
:
mnist
.
test
.
labels
,
keep_prob
:
1.0
})
x
:
X_test
,
y_
:
Y_test
,
keep_prob
:
1.0
})
print
(
'
test accuracy %g
'
%
accuracy
)
print
(
'
test accuracy %g
'
%
accuracy
)
np
.
set_printoptions
(
threshold
=
np
.
nan
)
np
.
set_printoptions
(
threshold
=
np
.
nan
)
print
(
"
Prediction sample:
"
+
str
(
preds
[:
50
]))
print
(
"
Prediction sample:
"
+
str
(
preds
[:
50
]))
print
(
"
Actual values:
"
+
str
(
np
.
argmax
(
mnist
.
test
.
labels
[:
50
],
1
)))
print
(
"
Actual values:
"
+
str
(
np
.
argmax
(
Y_test
[:
50
],
axis
=
1
)))
print
(
"
Elapsed time: %.4f s
"
%
(
stoped
-
started
))
print
(
"
Elapsed time: %.4f s
"
%
(
stoped
-
started
))
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment