Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
deepFriedConvnet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
deepFriedConvnet
Commits
1aabf81f
Commit
1aabf81f
authored
7 years ago
by
Luc Giffon
Browse files
Options
Downloads
Patches
Plain Diff
add a separate module for fastfoodlayer
parent
4a92670e
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
main/deepfriedConvnetMnist.py
+2
-155
2 additions, 155 deletions
main/deepfriedConvnetMnist.py
main/fasfood_layer.py
+158
-0
158 additions, 0 deletions
main/fasfood_layer.py
with
160 additions
and
155 deletions
main/deepfriedConvnetMnist.py
+
2
−
155
View file @
1aabf81f
...
...
@@ -12,14 +12,13 @@ Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Son
import
tensorflow
as
tf
import
numpy
as
np
import
scipy.linalg
import
scipy.stats
import
time
as
t
from
tensorflow.examples.tutorials.mnist
import
input_data
mnist
=
input_data
.
read_data_sets
(
'
MNIST_data
'
,
one_hot
=
True
)
from
fasfood_layer
import
fast_food
# --- Usual functions --- #
...
...
@@ -79,107 +78,6 @@ def random_biases(shape):
return
tf
.
Variable
(
b
,
name
=
"
random_biase
"
,
trainable
=
False
)
# --- Fast Food Naive --- #
def
G_variable
(
shape
,
trainable
=
False
):
"""
Return a Gaussian Random matrix converted into Tensorflow Variable.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:return: tf.Variable object containing the matrix, The norm2 of each line (np.array of float)
"""
assert
type
(
shape
)
==
int
or
(
type
(
shape
)
==
tuple
and
len
(
shape
)
==
2
)
G
=
np
.
random
.
normal
(
size
=
shape
).
astype
(
np
.
float32
)
G_norms
=
np
.
linalg
.
norm
(
G
,
ord
=
2
,
axis
=
1
)
return
tf
.
Variable
(
G
,
name
=
"
G
"
,
trainable
=
trainable
),
G_norms
def
B_variable
(
shape
,
trainable
=
False
):
"""
Return a random matrix of -1 and 1 picked uniformly and converted into Tensorflow Variable.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:return: tf.Variable object containing the matrix
"""
assert
type
(
shape
)
==
int
or
(
type
(
shape
)
==
tuple
and
len
(
shape
)
==
2
)
B
=
np
.
random
.
choice
([
-
1
,
1
],
size
=
shape
,
replace
=
True
).
astype
(
np
.
float32
)
return
tf
.
Variable
(
B
,
name
=
"
B
"
,
trainable
=
trainable
)
def
P_variable
(
d
,
nbr_stack
):
"""
Return a permutation matrix converted into Tensorflow Variable.
:param d: The width of the matrix (dimension of the input space)
:type d: int
:param nbr_stack: The height of the matrix (nbr_stack x d is the dimension of the output space)
:type nbr_stack: int
:return: tf.Variable object containing the matrix
"""
idx
=
np
.
hstack
([(
i
*
d
)
+
np
.
random
.
permutation
(
d
)
for
i
in
range
(
nbr_stack
)])
P
=
np
.
random
.
permutation
(
np
.
eye
(
N
=
nbr_stack
*
d
))[
idx
].
astype
(
np
.
float32
)
return
tf
.
Variable
(
P
,
name
=
"
P
"
,
trainable
=
False
)
def
H_variable
(
d
):
"""
Return an Hadamard matrix converted into Tensorflow Variable.
d must be a power of two.
:param d: The size of the Hadamard matrix (dimension of the input space).
:type d: int
:return: tf.Variable object containing the diagonal and not trainable
"""
H
=
build_hadamard
(
d
).
astype
(
np
.
float32
)
return
tf
.
Variable
(
H
,
name
=
"
H
"
,
trainable
=
False
)
def
S_variable
(
shape
,
G_norms
,
trainable
=
False
):
"""
Return a scaling matrix of random values picked from a chi distribution.
The values are re-scaled using the norm of the associated Gaussian random matrix G. The associated Gaussian
vectors are the ones generated by the `G_variable` function.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:param G_norms: The norms of the associated Gaussian random matrices G.
:type G_norms: np.array of floats
:return: tf.Variable object containing the matrix.
"""
S
=
np
.
multiply
((
1
/
G_norms
.
reshape
((
-
1
,
1
))),
scipy
.
stats
.
chi
.
rvs
(
shape
[
1
],
size
=
shape
).
astype
(
np
.
float32
))
return
tf
.
Variable
(
S
,
name
=
"
S
"
,
trainable
=
trainable
)
# --- Hadamard utils --- #
def
dimensionality_constraints
(
d
):
"""
Enforce d to be a power of 2
:param d: the original dimension
:return: the final dimension
"""
if
not
is_power_of_two
(
d
):
# find d that fulfills 2^l
d
=
np
.
power
(
2
,
np
.
floor
(
np
.
log2
(
d
))
+
1
)
return
d
def
is_power_of_two
(
input_integer
):
"""
Test if an integer is a power of two.
"""
if
input_integer
==
1
:
return
False
return
input_integer
!=
0
and
((
input_integer
&
(
input_integer
-
1
))
==
0
)
def
build_hadamard
(
n_neurons
):
return
scipy
.
linalg
.
hadamard
(
n_neurons
)
# --- Representation Layer --- #
def
random_features
(
conv_out
,
sigma
):
...
...
@@ -195,58 +93,6 @@ def random_features(conv_out, sigma):
return
h1_final
def
fast_food
(
conv_out
,
sigma
,
nbr_stack
=
1
,
trainable
=
False
):
"""
Return a fastfood transform op compatible with tensorflow graph.
Implementation largely inspired from https://gist.github.com/dougalsutherland/1a3c70e57dd1f64010ab .
See:
"
Fastfood | Approximating Kernel Expansions in Loglinear Time
"
by
Quoc Le, Tamas Sarl and Alex Smola.
:param conv_out: the input of the op
:param sigma: bandwith of the gaussian distribution
:param nbr_stack: number of fast food stacks
:param trainable: the diagonal matrices are trainable or not
:return: the output of the fastfood transform
"""
with
tf
.
name_scope
(
"
fastfood
"
+
"
_sigma-
"
+
str
(
sigma
)):
init_dim
=
np
.
prod
([
s
.
value
for
s
in
conv_out
.
shape
if
s
.
value
is
not
None
])
final_dim
=
int
(
dimensionality_constraints
(
init_dim
))
padding
=
final_dim
-
init_dim
conv_out2
=
tf
.
reshape
(
conv_out
,
[
-
1
,
init_dim
])
paddings
=
tf
.
constant
([[
0
,
0
],
[
0
,
padding
]])
conv_out2
=
tf
.
pad
(
conv_out2
,
paddings
,
"
CONSTANT
"
)
G
,
G_norm
=
G_variable
((
nbr_stack
,
final_dim
),
trainable
=
trainable
)
tf
.
summary
.
histogram
(
"
weights G
"
,
G
)
B
=
B_variable
((
nbr_stack
,
final_dim
),
trainable
=
trainable
)
tf
.
summary
.
histogram
(
"
weights B
"
,
B
)
H
=
H_variable
(
final_dim
)
tf
.
summary
.
histogram
(
"
weights H
"
,
H
)
P
=
P_variable
(
final_dim
,
nbr_stack
)
tf
.
summary
.
histogram
(
"
weights P
"
,
P
)
S
=
S_variable
((
nbr_stack
,
final_dim
),
G_norm
,
trainable
=
trainable
)
tf
.
summary
.
histogram
(
"
weights S
"
,
S
)
conv_out2
=
tf
.
reshape
(
conv_out2
,
(
1
,
-
1
,
1
,
final_dim
))
h_ff1
=
tf
.
multiply
(
conv_out2
,
B
,
name
=
"
Bx
"
)
h_ff1
=
tf
.
reshape
(
h_ff1
,
(
-
1
,
final_dim
))
h_ff2
=
tf
.
matmul
(
h_ff1
,
H
,
name
=
"
HBx
"
)
h_ff2
=
tf
.
reshape
(
h_ff2
,
(
-
1
,
final_dim
*
nbr_stack
))
h_ff3
=
tf
.
matmul
(
h_ff2
,
P
,
name
=
"
PHBx
"
)
h_ff4
=
tf
.
multiply
(
tf
.
reshape
(
h_ff3
,
(
-
1
,
final_dim
*
nbr_stack
)),
tf
.
reshape
(
G
,
(
-
1
,
final_dim
*
nbr_stack
)),
name
=
"
GPHBx
"
)
h_ff4
=
tf
.
reshape
(
h_ff4
,
(
-
1
,
final_dim
))
h_ff5
=
tf
.
matmul
(
h_ff4
,
H
,
name
=
"
HGPHBx
"
)
h_ff6
=
tf
.
scalar_mul
((
1
/
(
sigma
*
np
.
sqrt
(
final_dim
))),
tf
.
multiply
(
tf
.
reshape
(
h_ff5
,
(
-
1
,
final_dim
*
nbr_stack
)),
tf
.
reshape
(
S
,
(
-
1
,
final_dim
*
nbr_stack
)),
name
=
"
SHGPHBx
"
))
h_ff7_1
=
tf
.
cos
(
h_ff6
)
h_ff7_2
=
tf
.
sin
(
h_ff6
)
h_ff7
=
tf
.
scalar_mul
(
tf
.
sqrt
(
float
(
1
/
final_dim
)),
tf
.
concat
([
h_ff7_1
,
h_ff7_2
],
axis
=
1
))
return
h_ff7
def
fully_connected
(
conv_out
):
with
tf
.
name_scope
(
"
fc_1
"
):
h_pool2_flat
=
tf
.
reshape
(
conv_out
,
[
-
1
,
7
*
7
*
64
])
...
...
@@ -264,6 +110,7 @@ def mnist_dims():
output_dim
=
int
(
mnist
.
train
.
labels
.
shape
[
1
])
return
input_dim
,
output_dim
if
__name__
==
'
__main__
'
:
SIGMA
=
5.0
print
(
"
Sigma = {}
"
.
format
(
SIGMA
))
...
...
This diff is collapsed.
Click to expand it.
main/fasfood_layer.py
0 → 100644
+
158
−
0
View file @
1aabf81f
import
numpy
as
np
import
tensorflow
as
tf
import
scipy.linalg
import
scipy.stats
# --- Fast Food Naive --- #
def
G_variable
(
shape
,
trainable
=
False
):
"""
Return a Gaussian Random matrix converted into Tensorflow Variable.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:return: tf.Variable object containing the matrix, The norm2 of each line (np.array of float)
"""
assert
type
(
shape
)
==
int
or
(
type
(
shape
)
==
tuple
and
len
(
shape
)
==
2
)
G
=
np
.
random
.
normal
(
size
=
shape
).
astype
(
np
.
float32
)
G_norms
=
np
.
linalg
.
norm
(
G
,
ord
=
2
,
axis
=
1
)
return
tf
.
Variable
(
G
,
name
=
"
G
"
,
trainable
=
trainable
),
G_norms
def
B_variable
(
shape
,
trainable
=
False
):
"""
Return a random matrix of -1 and 1 picked uniformly and converted into Tensorflow Variable.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:return: tf.Variable object containing the matrix
"""
assert
type
(
shape
)
==
int
or
(
type
(
shape
)
==
tuple
and
len
(
shape
)
==
2
)
B
=
np
.
random
.
choice
([
-
1
,
1
],
size
=
shape
,
replace
=
True
).
astype
(
np
.
float32
)
return
tf
.
Variable
(
B
,
name
=
"
B
"
,
trainable
=
trainable
)
def
P_variable
(
d
,
nbr_stack
):
"""
Return a permutation matrix converted into Tensorflow Variable.
:param d: The width of the matrix (dimension of the input space)
:type d: int
:param nbr_stack: The height of the matrix (nbr_stack x d is the dimension of the output space)
:type nbr_stack: int
:return: tf.Variable object containing the matrix
"""
idx
=
np
.
hstack
([(
i
*
d
)
+
np
.
random
.
permutation
(
d
)
for
i
in
range
(
nbr_stack
)])
P
=
np
.
random
.
permutation
(
np
.
eye
(
N
=
nbr_stack
*
d
))[
idx
].
astype
(
np
.
float32
)
return
tf
.
Variable
(
P
,
name
=
"
P
"
,
trainable
=
False
)
def
H_variable
(
d
):
"""
Return an Hadamard matrix converted into Tensorflow Variable.
d must be a power of two.
:param d: The size of the Hadamard matrix (dimension of the input space).
:type d: int
:return: tf.Variable object containing the diagonal and not trainable
"""
H
=
build_hadamard
(
d
).
astype
(
np
.
float32
)
return
tf
.
Variable
(
H
,
name
=
"
H
"
,
trainable
=
False
)
def
S_variable
(
shape
,
G_norms
,
trainable
=
False
):
"""
Return a scaling matrix of random values picked from a chi distribution.
The values are re-scaled using the norm of the associated Gaussian random matrix G. The associated Gaussian
vectors are the ones generated by the `G_variable` function.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:param G_norms: The norms of the associated Gaussian random matrices G.
:type G_norms: np.array of floats
:return: tf.Variable object containing the matrix.
"""
S
=
np
.
multiply
((
1
/
G_norms
.
reshape
((
-
1
,
1
))),
scipy
.
stats
.
chi
.
rvs
(
shape
[
1
],
size
=
shape
).
astype
(
np
.
float32
))
return
tf
.
Variable
(
S
,
name
=
"
S
"
,
trainable
=
trainable
)
def
fast_food
(
conv_out
,
sigma
,
nbr_stack
=
1
,
trainable
=
False
):
"""
Return a fastfood transform op compatible with tensorflow graph.
Implementation largely inspired from https://gist.github.com/dougalsutherland/1a3c70e57dd1f64010ab .
See:
"
Fastfood | Approximating Kernel Expansions in Loglinear Time
"
by
Quoc Le, Tamas Sarl and Alex Smola.
:param conv_out: the input of the op
:param sigma: bandwith of the gaussian distribution
:param nbr_stack: number of fast food stacks
:param trainable: the diagonal matrices are trainable or not
:return: the output of the fastfood transform
"""
with
tf
.
name_scope
(
"
fastfood
"
+
"
_sigma-
"
+
str
(
sigma
)):
init_dim
=
np
.
prod
([
s
.
value
for
s
in
conv_out
.
shape
if
s
.
value
is
not
None
])
final_dim
=
int
(
dimensionality_constraints
(
init_dim
))
padding
=
final_dim
-
init_dim
conv_out2
=
tf
.
reshape
(
conv_out
,
[
-
1
,
init_dim
])
paddings
=
tf
.
constant
([[
0
,
0
],
[
0
,
padding
]])
conv_out2
=
tf
.
pad
(
conv_out2
,
paddings
,
"
CONSTANT
"
)
G
,
G_norm
=
G_variable
((
nbr_stack
,
final_dim
),
trainable
=
trainable
)
tf
.
summary
.
histogram
(
"
weights G
"
,
G
)
B
=
B_variable
((
nbr_stack
,
final_dim
),
trainable
=
trainable
)
tf
.
summary
.
histogram
(
"
weights B
"
,
B
)
H
=
H_variable
(
final_dim
)
tf
.
summary
.
histogram
(
"
weights H
"
,
H
)
P
=
P_variable
(
final_dim
,
nbr_stack
)
tf
.
summary
.
histogram
(
"
weights P
"
,
P
)
S
=
S_variable
((
nbr_stack
,
final_dim
),
G_norm
,
trainable
=
trainable
)
tf
.
summary
.
histogram
(
"
weights S
"
,
S
)
conv_out2
=
tf
.
reshape
(
conv_out2
,
(
1
,
-
1
,
1
,
final_dim
))
h_ff1
=
tf
.
multiply
(
conv_out2
,
B
,
name
=
"
Bx
"
)
h_ff1
=
tf
.
reshape
(
h_ff1
,
(
-
1
,
final_dim
))
h_ff2
=
tf
.
matmul
(
h_ff1
,
H
,
name
=
"
HBx
"
)
h_ff2
=
tf
.
reshape
(
h_ff2
,
(
-
1
,
final_dim
*
nbr_stack
))
h_ff3
=
tf
.
matmul
(
h_ff2
,
P
,
name
=
"
PHBx
"
)
h_ff4
=
tf
.
multiply
(
tf
.
reshape
(
h_ff3
,
(
-
1
,
final_dim
*
nbr_stack
)),
tf
.
reshape
(
G
,
(
-
1
,
final_dim
*
nbr_stack
)),
name
=
"
GPHBx
"
)
h_ff4
=
tf
.
reshape
(
h_ff4
,
(
-
1
,
final_dim
))
h_ff5
=
tf
.
matmul
(
h_ff4
,
H
,
name
=
"
HGPHBx
"
)
h_ff6
=
tf
.
scalar_mul
((
1
/
(
sigma
*
np
.
sqrt
(
final_dim
))),
tf
.
multiply
(
tf
.
reshape
(
h_ff5
,
(
-
1
,
final_dim
*
nbr_stack
)),
tf
.
reshape
(
S
,
(
-
1
,
final_dim
*
nbr_stack
)),
name
=
"
SHGPHBx
"
))
h_ff7_1
=
tf
.
cos
(
h_ff6
)
h_ff7_2
=
tf
.
sin
(
h_ff6
)
h_ff7
=
tf
.
scalar_mul
(
tf
.
sqrt
(
float
(
1
/
final_dim
)),
tf
.
concat
([
h_ff7_1
,
h_ff7_2
],
axis
=
1
))
return
h_ff7
# --- Hadamard utils --- #
def
dimensionality_constraints
(
d
):
"""
Enforce d to be a power of 2
:param d: the original dimension
:return: the final dimension
"""
if
not
is_power_of_two
(
d
):
# find d that fulfills 2^l
d
=
np
.
power
(
2
,
np
.
floor
(
np
.
log2
(
d
))
+
1
)
return
d
def
is_power_of_two
(
input_integer
):
"""
Test if an integer is a power of two.
"""
if
input_integer
==
1
:
return
False
return
input_integer
!=
0
and
((
input_integer
&
(
input_integer
-
1
))
==
0
)
def
build_hadamard
(
n_neurons
):
return
scipy
.
linalg
.
hadamard
(
n_neurons
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment