Newer
Older
import numpy as np
import math
Luc Giffon
committed
if __name__ == '__main__':
Luc Giffon
committed
raise DeprecationWarning("This should not be used, lazygrid of skluc should be used instead")
batch_size = np.logspace(3, 9, dtype=int, base=2, num=4)
num_epoch = 100
# sigma = np.logspace(-1, 2, base=10, num=3)
sigma = [1]
# gamma = np.logspace(-4, 0, base=10, num=3)
gamma = [1]
subsample_size = np.logspace(3, 9, dtype=int, base=2, num=4)
networks_types = ["dense", "deepfriedconvnet", "deepstorm"]
Luc Giffon
committed
datasets = ["cifar"]
output_dense = 2048
Luc Giffon
committed
nys_layer_dim_out = np.logspace(3, int(math.log(output_dense, 2)), dtype=int, base=2, num=3)
for d in datasets:
for network in networks_types:
s_network = network + " " + "--" + str(d) + " " + "--time" + " " + "--test" + " " + "-e" + " " + str(num_epoch) + " "
for b_size in batch_size:
s_epoch = s_network + "-s " + str(b_size) + " "
if network == "deepfriedconvnet":
Luc Giffon
committed
for sig in sigma:
s_sigma = s_epoch + "-S " + "{:.5f}".format(sig)
print(s_sigma)
elif network == "deepstorm":
Luc Giffon
committed
for gam in gamma:
s_gamma = s_epoch + "-G " + "{:.5f}".format(gam) + " "
for nys_size in subsample_size:
s_nys = s_gamma + "-m " + str(nys_size) + " "
for nys_output_size in nys_layer_dim_out:
s_nys_out = s_nys + "-w" + " " + str(nys_output_size)
print(s_nys_out)
else:
print(s_epoch)