import numpy as np import math if __name__ == '__main__': raise DeprecationWarning("This should not be used, lazygrid of skluc should be used instead") batch_size = np.logspace(3, 9, dtype=int, base=2, num=4) num_epoch = 100 # sigma = np.logspace(-1, 2, base=10, num=3) sigma = [1] # gamma = np.logspace(-4, 0, base=10, num=3) gamma = [1] subsample_size = np.logspace(3, 9, dtype=int, base=2, num=4) networks_types = ["dense", "deepfriedconvnet", "deepstorm"] datasets = ["cifar"] output_dense = 2048 nys_layer_dim_out = np.logspace(3, int(math.log(output_dense, 2)), dtype=int, base=2, num=3) for d in datasets: for network in networks_types: s_network = network + " " + "--" + str(d) + " " + "--time" + " " + "--test" + " " + "-e" + " " + str(num_epoch) + " " for b_size in batch_size: s_epoch = s_network + "-s " + str(b_size) + " " if network == "deepfriedconvnet": for sig in sigma: s_sigma = s_epoch + "-S " + "{:.5f}".format(sig) print(s_sigma) elif network == "deepstorm": for gam in gamma: s_gamma = s_epoch + "-G " + "{:.5f}".format(gam) + " " for nys_size in subsample_size: s_nys = s_gamma + "-m " + str(nys_size) + " " for nys_output_size in nys_layer_dim_out: s_nys_out = s_nys + "-w" + " " + str(nys_output_size) print(s_nys_out) else: print(s_epoch) pass