Newer
Older
"""
Convolutional Neural Netwok implementation in tensorflow whith multiple representations possible after the convolution:
- Fully connected layer
- Random Fourier Features layer
- Fast Food layer where Fast Hadamard Transform has been replaced by dot product with Hadamard matrix.
See:
"Deep Fried Convnets" by
Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, Ziyu Wang
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
import tensorflow as tf
import numpy as np
import scipy.linalg
import scipy.stats
import time as t
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# --- Usual functions --- #
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name="weights")
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name="biases")
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
Luc Giffon
committed
def convolution_mnist(input):
with tf.name_scope("conv_pool_1"):
# 32 is the number of filter we'll use. e.g. the number of different
# shapes this layer is able to recognize
Luc Giffon
committed
W_conv1 = weight_variable([5, 5, 1, 20])
tf.summary.histogram("weights conv1", W_conv1)
Luc Giffon
committed
b_conv1 = bias_variable([20])
tf.summary.histogram("biases conv1", b_conv1)
# -1 is here to keep the total size constant (784)
h_conv1 = tf.nn.relu(conv2d(input, W_conv1) + b_conv1)
tf.summary.histogram("act conv1", h_conv1)
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope("conv_pool_2"):
Luc Giffon
committed
W_conv2 = weight_variable([5, 5, 20, 50])
tf.summary.histogram("weights conv2", W_conv2)
Luc Giffon
committed
b_conv2 = bias_variable([50])
tf.summary.histogram("biases conv2", b_conv2)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
tf.summary.histogram("act conv2", h_conv2)
h_pool2 = max_pool_2x2(h_conv2)
return h_pool2
# --- Random Fourier Features --- #
def random_variable(shape, sigma):
W = np.random.normal(size=shape, scale=sigma).astype(np.float32)
return tf.Variable(W, name="random_Weights", trainable=False)
def random_biases(shape):
b = np.random.uniform(0, 2 * np.pi, size=shape).astype(np.float32)
return tf.Variable(b, name="random_biase", trainable=False)
# --- Fast Food Naive --- #
def G_variable(shape, trainable=False):
"""
Return a Gaussian Random matrix converted into Tensorflow Variable.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:return: tf.Variable object containing the matrix, The norm2 of each line (np.array of float)
"""
assert type(shape) == int or (type(shape) == tuple and len(shape) == 2)
G = np.random.normal(size=shape).astype(np.float32)
G_norms = np.linalg.norm(G, ord=2, axis=1)
return tf.Variable(G, name="G", trainable=trainable), G_norms
def B_variable(shape, trainable=False):
"""
Return a random matrix of -1 and 1 picked uniformly and converted into Tensorflow Variable.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:return: tf.Variable object containing the matrix
"""
assert type(shape) == int or (type(shape) == tuple and len(shape) == 2)
B = np.random.choice([-1, 1], size=shape, replace=True).astype(np.float32)
Luc Giffon
committed
return tf.Variable(B, name="B", trainable=trainable)
def P_variable(d, nbr_stack):
"""
Return a permutation matrix converted into Tensorflow Variable.
:param d: The width of the matrix (dimension of the input space)
:type d: int
:param nbr_stack: The height of the matrix (nbr_stack x d is the dimension of the output space)
:type nbr_stack: int
:return: tf.Variable object containing the matrix
"""
Luc Giffon
committed
idx = np.hstack([(i * d) + np.random.permutation(d) for i in range(nbr_stack)])
P = np.random.permutation(np.eye(N=nbr_stack * d))[idx].astype(np.float32)
return tf.Variable(P, name="P", trainable=False)
def H_variable(d):
"""
Return an Hadamard matrix converted into Tensorflow Variable.
d must be a power of two.
:param d: The size of the Hadamard matrix (dimension of the input space).
:type d: int
:return: tf.Variable object containing the diagonal and not trainable
"""
H = build_hadamard(d).astype(np.float32)
return tf.Variable(H, name="H", trainable=False)
def S_variable(shape, G_norms, trainable=False):
"""
Return a scaling matrix of random values picked from a chi distribution.
The values are re-scaled using the norm of the associated Gaussian random matrix G. The associated Gaussian
vectors are the ones generated by the `G_variable` function.
:param shape: The shape of the matrix (number of fastfood stacks (v), dimension of the input space (d))
:type shape: int or tuple of int (tuple size = 2)
:param G_norms: The norms of the associated Gaussian random matrices G.
:type G_norms: np.array of floats
:return: tf.Variable object containing the matrix.
"""
S = np.multiply((1 / G_norms.reshape((-1, 1))), scipy.stats.chi.rvs(shape[1], size=shape).astype(np.float32))
Luc Giffon
committed
return tf.Variable(S, name="S", trainable=trainable)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# --- Hadamard utils --- #
def dimensionality_constraints(d):
"""
Enforce d to be a power of 2
:param d: the original dimension
:return: the final dimension
"""
if not is_power_of_two(d):
# find d that fulfills 2^l
d = np.power(2, np.floor(np.log2(d)) + 1)
return d
def is_power_of_two(input_integer):
""" Test if an integer is a power of two. """
if input_integer == 1:
return False
return input_integer != 0 and ((input_integer & (input_integer - 1)) == 0)
def build_hadamard(n_neurons):
return scipy.linalg.hadamard(n_neurons)
# --- Representation Layer --- #
def random_features(conv_out, sigma):
with tf.name_scope("random_features"):
init_dim = np.prod([s.value for s in conv_out.shape if s.value is not None])
conv_out2 = tf.reshape(conv_out, [-1, init_dim])
W = random_variable((init_dim, init_dim), sigma)
b = random_biases(init_dim)
h1 = tf.matmul(conv_out2, W, name="Wx") + b
h1_cos = tf.cos(h1)
h1_final = tf.scalar_mul(np.sqrt(2.0 / init_dim).astype(np.float32), h1_cos)
return h1_final
def fast_food(conv_out, sigma, nbr_stack=1, trainable=False):
"""
Return a fastfood transform op compatible with tensorflow graph.
Implementation largely inspired from https://gist.github.com/dougalsutherland/1a3c70e57dd1f64010ab .
See:
"Fastfood | Approximating Kernel Expansions in Loglinear Time" by
Quoc Le, Tamas Sarl and Alex Smola.
:param conv_out: the input of the op
:param sigma: bandwith of the gaussian distribution
:param nbr_stack: number of fast food stacks
:param trainable: the diagonal matrices are trainable or not
:return: the output of the fastfood transform
"""
with tf.name_scope("fastfood" + "_sigma-"+str(sigma)):
init_dim = np.prod([s.value for s in conv_out.shape if s.value is not None])
final_dim = int(dimensionality_constraints(init_dim))
padding = final_dim - init_dim
conv_out2 = tf.reshape(conv_out, [-1, init_dim])
paddings = tf.constant([[0, 0], [0, padding]])
conv_out2 = tf.pad(conv_out2, paddings, "CONSTANT")
G, G_norm = G_variable((nbr_stack, final_dim), trainable=trainable)
tf.summary.histogram("weights G", G)
B = B_variable((nbr_stack, final_dim), trainable=trainable)
tf.summary.histogram("weights B", B)
H = H_variable(final_dim)
tf.summary.histogram("weights H", H)
P = P_variable(final_dim, nbr_stack)
tf.summary.histogram("weights P", P)
S = S_variable((nbr_stack, final_dim), G_norm, trainable=trainable)
tf.summary.histogram("weights S", S)
conv_out2 = tf.reshape(conv_out2, (1, -1, 1, final_dim))
h_ff1 = tf.multiply(conv_out2, B, name="Bx")
h_ff1 = tf.reshape(h_ff1, (-1, final_dim))
h_ff2 = tf.matmul(h_ff1, H, name="HBx")
h_ff2 = tf.reshape(h_ff2, (-1, final_dim * nbr_stack))
h_ff3 = tf.matmul(h_ff2, P, name="PHBx")
h_ff4 = tf.multiply(tf.reshape(h_ff3, (-1, final_dim * nbr_stack)), tf.reshape(G, (-1, final_dim * nbr_stack)), name="GPHBx")
h_ff4 = tf.reshape(h_ff4, (-1, final_dim))
h_ff5 = tf.matmul(h_ff4, H, name="HGPHBx")
h_ff6 = tf.scalar_mul((1/(sigma * np.sqrt(final_dim))), tf.multiply(tf.reshape(h_ff5, (-1, final_dim * nbr_stack)), tf.reshape(S, (-1, final_dim * nbr_stack)), name="SHGPHBx"))
h_ff7_1 = tf.cos(h_ff6)
h_ff7_2 = tf.sin(h_ff6)
h_ff7 = tf.scalar_mul(tf.sqrt(float(1 / final_dim)), tf.concat([h_ff7_1, h_ff7_2], axis=1))
return h_ff7
def fully_connected(conv_out):
with tf.name_scope("fc_1"):
h_pool2_flat = tf.reshape(conv_out, [-1, 7 * 7 * 64])
W_fc1 = weight_variable([7 * 7 * 64, 4096*2])
b_fc1 = bias_variable([4096*2])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
tf.summary.histogram("weights", W_fc1)
tf.summary.histogram("biases", b_fc1)
return h_fc1
Luc Giffon
committed
def mnist_dims():
input_dim = int(mnist.train.images.shape[1])
output_dim = int(mnist.train.labels.shape[1])
return input_dim, output_dim
if __name__ == '__main__':
Luc Giffon
committed
SIGMA = 5.0
print("Sigma = {}".format(SIGMA))
with tf.Graph().as_default():
Luc Giffon
committed
# todo parametrize datset
input_dim, output_dim = mnist_dims()
x = tf.placeholder(tf.float32, shape=[None, input_dim], name="x")
y_ = tf.placeholder(tf.float32, shape=[None, output_dim], name="labels")
Luc Giffon
committed
# side size is width or height of the images
side_size = int(np.sqrt(input_dim))
x_image = tf.reshape(x, [-1, side_size, side_size, 1])
tf.summary.image("digit", x_image, max_outputs=3)
# Representation layer
Luc Giffon
committed
h_conv = convolution_mnist(x_image)
# h_conv = x
# out_fc = fully_connected(h_conv) # 95% accuracy
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=1)) # 83% accuracy (conv) | 56% accuracy (noconv)
out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2))
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, nbr_stack=2, trainable=True))
# out_fc = tf.nn.relu(fast_food(h_conv, SIGMA, trainable=True)) # 84% accuracy (conv) | 59% accuracy (noconv)
Luc Giffon
committed
# out_fc = fast_food(h_conv, SIGMA, diag=True, trainable=True) # 84% accuracy (conv) | 59% accuracy (noconv)
# out_fc = random_features(h_conv, SIGMA) # 82% accuracy (conv) | 47% accuracy (noconv)
# classification
with tf.name_scope("fc_2"):
keep_prob = tf.placeholder(tf.float32, name="keep_prob")
h_fc1_drop = tf.nn.dropout(out_fc, keep_prob)
dim = np.prod([s.value for s in h_fc1_drop.shape if s.value is not None])
Luc Giffon
committed
W_fc2 = weight_variable([dim, output_dim])
b_fc2 = bias_variable([output_dim])
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
tf.summary.histogram("weights", W_fc2)
tf.summary.histogram("biases", b_fc2)
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# calcul de la loss
with tf.name_scope("xent"):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv, name="xentropy"),
name="xentropy_mean")
tf.summary.scalar('loss-xent', cross_entropy)
# calcul du gradient
with tf.name_scope("train"):
global_step = tf.Variable(0, name="global_step", trainable=False)
train_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy, global_step=global_step)
# calcul de l'accuracy
with tf.name_scope("accuracy"):
predictions = tf.argmax(y_conv, 1)
correct_prediction = tf.equal(predictions, tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
merged_summary = tf.summary.merge_all()
init = tf.global_variables_initializer()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Instantiate a SummaryWriter to output summaries and the Graph.
Luc Giffon
committed
summary_writer = tf.summary.FileWriter("results_deepfried_stacked")
summary_writer.add_graph(sess.graph)
# Initialize all Variable objects
sess.run(init)
# actual learning
started = t.time()
for i in range(20000):
Luc Giffon
committed
batch = mnist.train.next_batch(64)
feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5}
# le _ est pour capturer le retour de "train_optimizer" qu'il faut appeler
# pour calculer le gradient mais dont l'output ne nous interesse pas
_, loss = sess.run([train_optimizer, cross_entropy], feed_dict=feed_dict)
if i % 100 == 0:
print('step {}, loss {} (with dropout)'.format(i, loss))
summary_str = sess.run(merged_summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, i)
stoped = t.time()
accuracy, preds = sess.run([accuracy, predictions], feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
print('test accuracy %g' % accuracy)
np.set_printoptions(threshold=np.nan)
print("Prediction sample: " + str(preds[:50]))
print("Actual values: " + str(np.argmax(mnist.test.labels[:50], 1)))
print("Elapsed time: %.4f s" % (stoped - started))