Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
Convolutional Neural Netwok implementation in tensorflow whith multiple representations possible after the convolution:
- Fully connected layer
- Random Fourier Features layer
- Fast Food layer where Fast Hadamard Transform has been replaced by dot product with Hadamard matrix.
"""
import tensorflow as tf
import numpy as np
import scipy.linalg
import scipy.stats
import time as t
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# --- Usual functions --- #
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name="weights")
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name="biases")
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def convolution(input):
with tf.name_scope("conv_pool_1"):
# 32 is the number of filter we'll use. e.g. the number of different
# shapes this layer is able to recognize
W_conv1 = weight_variable([5, 5, 1, 32])
tf.summary.histogram("weights conv1", W_conv1)
b_conv1 = bias_variable([32])
tf.summary.histogram("biases conv1", b_conv1)
# -1 is here to keep the total size constant (784)
h_conv1 = tf.nn.relu(conv2d(input, W_conv1) + b_conv1)
tf.summary.histogram("act conv1", h_conv1)
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope("conv_pool_2"):
W_conv2 = weight_variable([5, 5, 32, 64])
tf.summary.histogram("weights conv2", W_conv2)
b_conv2 = bias_variable([64])
tf.summary.histogram("biases conv2", b_conv2)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
tf.summary.histogram("act conv2", h_conv2)
h_pool2 = max_pool_2x2(h_conv2)
return h_pool2
# --- Random Fourier Features --- #
def random_variable(shape, sigma):
W = np.random.normal(size=shape, scale=sigma).astype(np.float32)
return tf.Variable(W, name="random_Weights", trainable=False)
def random_biases(shape):
b = np.random.uniform(0, 2 * np.pi, size=shape).astype(np.float32)
return tf.Variable(b, name="random_biase", trainable=False)
# --- Fast Food Naive --- #
def G_variable(d, diag=True):
"""
Return a Gaussian Random diagonal matrix converted into Tensorflow Variable.
:param d: The size of the diagonal
:type d: int
:return: tf.Variable object containing the diagonal and not trainable, The frobenius norm of this diagonal (float)
"""
if diag:
G = np.diag(np.random.normal(size=d)).astype(np.float32)
G_norm = np.linalg.norm(G, ord='fro')
else:
G = np.random.normal(size=d).astype(np.float32)
G_norm = np.linalg.norm(G, ord=2)
print("Norm of G is: {}".format(G_norm))
return tf.Variable(G, name="G", trainable=False), G_norm
def B_variable(d, diag=True):
"""
Return a random diagonal matrix of -1 and 1 picked uniformly into Tensorflow Variable.
:param d: The size of the diagonal
:type d: int
:return: tf.Variable object containing the diagonal and not trainable
"""
if diag:
B = np.diag(np.random.choice([-1, 1], size=d, replace=True)).astype(np.float32)
else:
B = np.random.choice([-1, 1], size=d, replace=True).astype(np.float32)
return tf.Variable(B, name="B", trainable=False)
def P_variable(d):
"""
Return a permutation matrix into Tensorflow Variable.
:param d: The size of the diagonal
:type d: int
:return: tf.Variable object containing the diagonal and not trainable
"""
idx = np.random.permutation(d)
P = np.random.permutation(np.eye(N=d))[idx].astype(np.float32)
return tf.Variable(P, name="P", trainable=False)
def H_variable(d):
"""
Return an Hadamard matrix into Tensorflow Variable.
d must be a power of two.
:param d: The size of the Hadamard matrix.
:type d: int
:return: tf.Variable object containing the diagonal and not trainable
"""
H = build_hadamard(d).astype(np.float32)
return tf.Variable(H, name="H", trainable=False)
def S_variable(d, G_norm, diag=True):
"""
Return a scaling diagonal matrix of random values picked from a chi distribution.
The values are re-scaled using the norm of the Gaussian Diagonal random matrix G.
:param d: The size of the diagonal.
:type d: int
:param G_norm: The norm of the Gaussian Diagonal random matrix G.
:type G_norm: float
:return: tf.Variable object containing the diagonal and not trainable.
"""
if diag:
S = np.diag((1 / G_norm) * scipy.stats.chi.rvs(d, size=d)).astype(np.float32)
else:
S = (1 / G_norm) * scipy.stats.chi.rvs(d, size=d).astype(np.float32)
return tf.Variable(S, name="S", trainable=False)
# --- Hadamard utils --- #
def dimensionality_constraints(d):
"""
Enforce d to be a power of 2
:param d: the original dimension
:return: the final dimension
"""
if not is_power_of_two(d):
# find d that fulfills 2^l
d = np.power(2, np.floor(np.log2(d)) + 1)
return d
def is_power_of_two(input_integer):
""" Test if an integer is a power of two. """
if input_integer == 1:
return False
return input_integer != 0 and ((input_integer & (input_integer - 1)) == 0)
def build_hadamard(n_neurons):
return scipy.linalg.hadamard(n_neurons)
# --- Representation Layer --- #
def random_features(conv_out, sigma):
with tf.name_scope("random_features"):
init_dim = np.prod([s.value for s in conv_out.shape if s.value is not None])
conv_out2 = tf.reshape(conv_out, [-1, init_dim])
W = random_variable((init_dim, init_dim), sigma)
b = random_biases(init_dim)
h1 = tf.matmul(conv_out2, W, name="Wx") + b
h1_cos = tf.cos(h1)
h1_final = tf.scalar_mul(np.sqrt(2.0 / init_dim).astype(np.float32), h1_cos)
return h1_final
def fast_food(conv_out, sigma, diag=True, trainable=False):
# todo use te trainable parameter
with tf.name_scope("fastfood"):
init_dim = np.prod([s.value for s in conv_out.shape if s.value is not None])
final_dim = int(dimensionality_constraints(init_dim))
padding = final_dim - init_dim
conv_out2 = tf.reshape(conv_out, [-1, init_dim])
paddings = tf.constant([[0, 0], [0, padding]])
conv_out2 = tf.pad(conv_out2, paddings, "CONSTANT")
G, G_norm = G_variable(final_dim, diag=diag)
tf.summary.histogram("weights G", G)
B = B_variable(final_dim, diag=diag)
tf.summary.histogram("weights B", B)
H = H_variable(final_dim)
tf.summary.histogram("weights H", H)
P = P_variable(final_dim)
tf.summary.histogram("weights P", P)
S = S_variable(final_dim, G_norm, diag=diag)
tf.summary.histogram("weights S", S)
if diag:
h_ff1 = tf.matmul(conv_out2, B, name="Bx")
h_ff2 = tf.matmul(h_ff1, H, name="HBx")
h_ff3 = tf.matmul(h_ff2, P, name="PHBx")
h_ff4 = tf.matmul(h_ff3, G, name="GPHBx")
h_ff5 = tf.matmul(h_ff4, H, name="HGPHBx")
h_ff6 = tf.scalar_mul((1/(sigma * np.sqrt(final_dim))), tf.matmul(h_ff5, S, name="SHGPHBx"))
h_ff7_1 = tf.cos(h_ff6)
h_ff7_2 = tf.sin(h_ff6)
h_ff7 = tf.scalar_mul(tf.sqrt(float(1 / final_dim)), tf.concat([h_ff7_1, h_ff7_2], axis=1))
else:
h_ff1 = tf.multiply(conv_out2, B, name="Bx")
h_ff2 = tf.matmul(h_ff1, H, name="HBx")
h_ff3 = tf.matmul(h_ff2, P, name="PHBx")
h_ff4 = tf.multiply(h_ff3, G, name="GPHBx")
h_ff5 = tf.matmul(h_ff4, H, name="HGPHBx")
h_ff6 = tf.scalar_mul((1/(sigma * np.sqrt(final_dim))), tf.multiply(h_ff5, S, name="SHGPHBx"))
h_ff7_1 = tf.cos(h_ff6)
h_ff7_2 = tf.sin(h_ff6)
h_ff7 = tf.scalar_mul(tf.sqrt(float(1 / final_dim)), tf.concat([h_ff7_1, h_ff7_2], axis=1))
return h_ff7
def fully_connected(conv_out):
with tf.name_scope("fc_1"):
h_pool2_flat = tf.reshape(conv_out, [-1, 7 * 7 * 64])
W_fc1 = weight_variable([7 * 7 * 64, 4096*2])
b_fc1 = bias_variable([4096*2])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
tf.summary.histogram("weights", W_fc1)
tf.summary.histogram("biases", b_fc1)
return h_fc1
if __name__ == '__main__':
SIGMA = 100.0
print("Sigma = {}".format(SIGMA))
with tf.Graph().as_default():
input_dim = int(mnist.train.images.shape[1])
output_dim = int(mnist.train.labels.shape[1])
side_size = int(np.sqrt(input_dim))
x = tf.placeholder(tf.float32, shape=[None, input_dim], name="x")
y_ = tf.placeholder(tf.float32, shape=[None, output_dim], name="labels")
x_image = tf.reshape(x, [-1, side_size, side_size, 1])
tf.summary.image("digit", x_image, max_outputs=3)
# Representation layer
h_conv = convolution(x_image)
# h_conv = x
# out_fc = fully_connected(h_conv) # 95% accuracy
# out_fc = fast_food(h_conv, SIGMA) # 83% accuracy (conv) | 56% accuracy (noconv)
# out_fc = fast_food(h_conv, SIGMA, diag=False) # 84% accuracy (conv) | 59% accuracy (noconv)
out_fc = random_features(h_conv, SIGMA) # 82% accuracy (conv) | 47% accuracy (noconv)
# classification
with tf.name_scope("fc_2"):
keep_prob = tf.placeholder(tf.float32, name="keep_prob")
h_fc1_drop = tf.nn.dropout(out_fc, keep_prob)
dim = np.prod([s.value for s in h_fc1_drop.shape if s.value is not None])
W_fc2 = weight_variable([dim, 10])
b_fc2 = bias_variable([10])
tf.summary.histogram("weights", W_fc2)
tf.summary.histogram("biases", b_fc2)
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# calcul de la loss
with tf.name_scope("xent"):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv, name="xentropy"),
name="xentropy_mean")
tf.summary.scalar('loss-xent', cross_entropy)
# calcul du gradient
with tf.name_scope("train"):
global_step = tf.Variable(0, name="global_step", trainable=False)
train_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy, global_step=global_step)
# calcul de l'accuracy
with tf.name_scope("accuracy"):
predictions = tf.argmax(y_conv, 1)
correct_prediction = tf.equal(predictions, tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
merged_summary = tf.summary.merge_all()
init = tf.global_variables_initializer()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Instantiate a SummaryWriter to output summaries and the Graph.
summary_writer = tf.summary.FileWriter("results_deepfried")
summary_writer.add_graph(sess.graph)
# Initialize all Variable objects
sess.run(init)
# actual learning
started = t.time()
for i in range(500):
batch = mnist.train.next_batch(50)
feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5}
# le _ est pour capturer le retour de "train_optimizer" qu'il faut appeler
# pour calculer le gradient mais dont l'output ne nous interesse pas
_, loss = sess.run([train_optimizer, cross_entropy], feed_dict=feed_dict)
if i % 100 == 0:
print('step {}, loss {} (with dropout)'.format(i, loss))
summary_str = sess.run(merged_summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, i)
stoped = t.time()
accuracy, preds = sess.run([accuracy, predictions], feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
print('test accuracy %g' % accuracy)
np.set_printoptions(threshold=np.nan)
print("Prediction sample: " + str(preds[:50]))
print("Actual values: " + str(np.argmax(mnist.test.labels[:50], 1)))
print("Elapsed time: %.4f s" % (stoped - started))