- Nov 06, 2019
-
-
Charly LAMOTHE authored
- Add a TODO for the subset in train - Remove an useless new line
-
Léo Bouscarrat authored
-
Léo Bouscarrat authored
-
- Nov 05, 2019
-
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
- Save and load json files from __dict__.
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
- Fix bug of resolve_experiment_id after 10 exp ids; - Display the new experiment id at the beginning of the training; - For now there's only a simple losses plot in compute_results.
-
Charly LAMOTHE authored
-
Charly LAMOTHE authored
- Update requirements packages.
-
- Nov 04, 2019
-
-
Charly LAMOTHE authored
- In compute_results, add loadenv, load raw results, and update experiment_ids so that it's possible to specify a list of experiments ids. The default behavior is to load all exp ids; - Fix normalization option in train.py. By default it normalizes D, and it doesn't when specify wo_normalization option; - Fix logger.warn to logger.warning in train.py - Replace the dumping of result in trainer.py by a dedicated class to save and load the trained model and training metadatas: model_raw_results.py; - Rename too long func DatasetLoader.load_from_name to DatasetLoader.load; - Add loading functions in dataset_parameters and model_parameters; - Set console logging level to INFO to summarize the most important console logs; - Add a load function in model_factory; - In omp_forest_regressor, move private funcs to the bottom of the file. TODO: compute the plot from the loaded raw results in compute_results file.
-
Charly Lamothe authored
Luc manage normalization See merge request !2
-
Charly LAMOTHE authored
- Add train_on_subset option to specify on which subset the model will be trained (either train or dev); - find_dotenv() only working by specifying the example env on my machine? - Add the seeds option to specify the seed(s) to use, and remove the use_random_seed, because it's obv if random_seed_number is used; - Use a logger in train.py instead of prints.
-
Luc Giffon authored
-
Luc Giffon authored
-
Luc Giffon authored
-
Luc Giffon authored
-
Luc Giffon authored
-
Charly Lamothe authored
Luc new archi See merge request !1
-
Luc Giffon authored
petit problème de nommage
-
Luc Giffon authored
rassemble le code dans un répertoire 'code' + update setup.py en conséquence + ajoute scikit-learn à requirements.txt
-
Luc Giffon authored
-
- Nov 03, 2019
-
-
Charly LAMOTHE authored
- Add error handling module (TODO: add logging over the code) - Record dataset parameters and model parameters - Begin compute_results, plotter and visualize files
-
- Oct 24, 2019
-
-
charly.lamothe authored
-
charly.lamothe authored
-
farah.cherfaoui authored
-
- Oct 09, 2019
-
-
Charly Lamothe authored
-
- Oct 06, 2019
-
-
farah.cherfaoui authored
-
farah.cherfaoui authored
-
- Sep 27, 2019
-
-
Charly Lamothe authored
-
- Sep 25, 2019
-
-
Luc Giffon authored
-
Luc Giffon authored
-
Luc Giffon authored
-