Skip to content
Snippets Groups Projects
Commit 306656fc authored by Charly LAMOTHE's avatar Charly LAMOTHE
Browse files

Uppercased default consts

parent e0abe67e
No related branches found
No related tags found
1 merge request!3clean scripts
...@@ -9,7 +9,7 @@ import numpy as np ...@@ -9,7 +9,7 @@ import numpy as np
class OmpForestRegressor(BaseEstimator): class OmpForestRegressor(BaseEstimator):
default_score_metric = 'mse' DEFAULT_SCORE_METRIC = 'mse'
def __init__(self, models_parameters): def __init__(self, models_parameters):
self._regressor = RandomForestRegressor(n_estimators=models_parameters.forest_size, self._regressor = RandomForestRegressor(n_estimators=models_parameters.forest_size,
...@@ -60,7 +60,7 @@ class OmpForestRegressor(BaseEstimator): ...@@ -60,7 +60,7 @@ class OmpForestRegressor(BaseEstimator):
return predictions return predictions
def score(self, X, y, metric=default_score_metric): def score(self, X, y, metric=DEFAULT_SCORE_METRIC):
""" """
Evaluate OMPForestRegressor on (`X`, `y`) using `metric` Evaluate OMPForestRegressor on (`X`, `y`) using `metric`
......
...@@ -34,7 +34,7 @@ class Trainer(object): ...@@ -34,7 +34,7 @@ class Trainer(object):
train_score=model.score(self._dataset.X_train, self._dataset.y_train), train_score=model.score(self._dataset.X_train, self._dataset.y_train),
dev_score=model.score(self._dataset.X_dev, self._dataset.y_dev), dev_score=model.score(self._dataset.X_dev, self._dataset.y_dev),
test_score=model.score(self._dataset.X_test, self._dataset.y_test), test_score=model.score(self._dataset.X_test, self._dataset.y_test),
score_metric=model.default_score_metric, score_metric=model.DEFAULT_SCORE_METRIC, # TODO: resolve the used metric in a proper way
train_score_regressor=model.score_regressor(self._dataset.X_train, self._dataset.y_train), train_score_regressor=model.score_regressor(self._dataset.X_train, self._dataset.y_train),
dev_score_regressor=model.score_regressor(self._dataset.X_dev, self._dataset.y_dev), dev_score_regressor=model.score_regressor(self._dataset.X_dev, self._dataset.y_dev),
test_score_regressor=model.score_regressor(self._dataset.X_test, self._dataset.y_test) test_score_regressor=model.score_regressor(self._dataset.X_test, self._dataset.y_test)
......
...@@ -14,14 +14,14 @@ if __name__ == "__main__": ...@@ -14,14 +14,14 @@ if __name__ == "__main__":
# get environment variables in .env # get environment variables in .env
load_dotenv(find_dotenv('.env.example')) load_dotenv(find_dotenv('.env.example'))
default_results_dir = os.environ["project_dir"] + os.sep + 'results' DEFAULT_RESULTS_DIR = os.environ["project_dir"] + os.sep + 'results'
default_models_dir = os.environ["project_dir"] + os.sep + 'models' DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models'
default_experiment_ids = None DEFAULT_EXPERIMENT_IDS = None
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--results_dir', nargs='?', type=str, default=default_results_dir, help='The output directory of the results.') parser.add_argument('--results_dir', nargs='?', type=str, default=DEFAULT_RESULTS_DIR, help='The output directory of the results.')
parser.add_argument('--models_dir', nargs='?', type=str, default=default_models_dir, help='The output directory of the trained models.') parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
parser.add_argument('--experiment_ids', nargs='+', type=int, default=default_experiment_ids, help='Compute the results of the specified experiment id(s)') parser.add_argument('--experiment_ids', nargs='+', type=int, default=DEFAULT_EXPERIMENT_IDS, help='Compute the results of the specified experiment id(s)')
args = parser.parse_args() args = parser.parse_args()
pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True) pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True)
......
...@@ -19,33 +19,33 @@ if __name__ == "__main__": ...@@ -19,33 +19,33 @@ if __name__ == "__main__":
# get environment variables in .env # get environment variables in .env
load_dotenv(find_dotenv('.env.example')) load_dotenv(find_dotenv('.env.example'))
default_dataset_name = 'boston' DEFAULT_DATASET_NAME = 'boston'
default_normalize = True DEFAULT_NORMALIZE_D = False
default_normalize_D = False DEFAULT_DATASET_NORMALIZER = None
default_dataset_normalizer = None DEFAULT_FOREST_SIZE = 100
default_forest_size = 100 DEFAULT_EXTRACTED_FOREST_SIZE = 10
default_extracted_forest_size = 10
# the models will be stored in a directory structure like: models/{experiment_id}/seeds/{seed_nb}/extracted_forest_size/{nb_extracted_trees} # the models will be stored in a directory structure like: models/{experiment_id}/seeds/{seed_nb}/extracted_forest_size/{nb_extracted_trees}
default_models_dir = os.environ["project_dir"] + os.sep + 'models' DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models'
default_dev_size = 0.2 DEFAULT_DEV_SIZE = 0.2
default_test_size = 0.2 DEFAULT_TEST_SIZE = 0.2
default_random_seed_number = 1 DEFAULT_RANDOM_SEED_NUMBER = 1
DEFAULT_TRAIN_ON_SUBSET = 'train'
begin_random_seed_range = 1 begin_random_seed_range = 1
end_random_seed_range = 2000 end_random_seed_range = 2000
default_train_on_subset = 'train'
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset_name', nargs='?', type=str, default=default_dataset_name, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.') parser.add_argument('--dataset_name', nargs='?', type=str, default=DEFAULT_DATASET_NAME, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.')
parser.add_argument('--normalize_D', action='store_true', default=default_normalize_D, help='Specify if we want to normalize the prediction of the forest by doing the L2 division of the pred vectors.') parser.add_argument('--normalize_D', action='store_true', default=DEFAULT_NORMALIZE_D, help='Specify if we want to normalize the prediction of the forest by doing the L2 division of the pred vectors.')
parser.add_argument('--dataset_normalizer', nargs='?', type=str, default=default_dataset_normalizer, help='Specify which dataset normalizer use (either standard, minmax, robust or normalizer).') parser.add_argument('--dataset_normalizer', nargs='?', type=str, default=DEFAULT_DATASET_NORMALIZER, help='Specify which dataset normalizer use (either standard, minmax, robust or normalizer).')
parser.add_argument('--forest_size', nargs='?', type=int, default=default_forest_size, help='The number of trees of the random forest.') parser.add_argument('--forest_size', nargs='?', type=int, default=DEFAULT_FOREST_SIZE, help='The number of trees of the random forest.')
parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=default_extracted_forest_size, help='The number of trees selected by OMP.') parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=DEFAULT_EXTRACTED_FOREST_SIZE, help='The number of trees selected by OMP.')
parser.add_argument('--models_dir', nargs='?', type=str, default=default_models_dir, help='The output directory of the trained models.') parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
parser.add_argument('--dev_size', nargs='?', type=float, default=default_dev_size, help='Dev subset ratio.') parser.add_argument('--dev_size', nargs='?', type=float, default=DEFAULT_DEV_SIZE, help='Dev subset ratio.')
parser.add_argument('--test_size', nargs='?', type=float, default=default_test_size, help='Test subset ratio.') parser.add_argument('--test_size', nargs='?', type=float, default=DEFAULT_TEST_SIZE, help='Test subset ratio.')
parser.add_argument('--random_seed_number', nargs='?', type=int, default=default_random_seed_number, help='Number of random seeds used.') parser.add_argument('--random_seed_number', nargs='?', type=int, default=DEFAULT_RANDOM_SEED_NUMBER, help='Number of random seeds used.')
parser.add_argument('--seeds', nargs='+', type=int, default=None, help='Specific a list of seeds instead of generate them randomly') parser.add_argument('--seeds', nargs='+', type=int, default=None, help='Specific a list of seeds instead of generate them randomly')
parser.add_argument('--train_on_subset', nargs='?', type=str, default=default_train_on_subset, help='Specify on witch subset the model will be trained (either train or dev).') parser.add_argument('--train_on_subset', nargs='?', type=str, default=DEFAULT_TRAIN_ON_SUBSET, help='Specify on witch subset the model will be trained (either train or dev).')
args = parser.parse_args() args = parser.parse_args()
pathlib.Path(args.models_dir).mkdir(parents=True, exist_ok=True) pathlib.Path(args.models_dir).mkdir(parents=True, exist_ok=True)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment