Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Commits
b62b7df7
Commit
b62b7df7
authored
5 years ago
by
Luc Giffon
Browse files
Options
Downloads
Patches
Plain Diff
support for normalize parameter + optimisation on train (wtf was that for loop)
parent
c9dff280
No related branches found
No related tags found
2 merge requests
!3
clean scripts
,
!2
Luc manage normalization
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
code/bolsonaro/models/model_parameters.py
+8
-2
8 additions, 2 deletions
code/bolsonaro/models/model_parameters.py
code/bolsonaro/models/omp_forest_regressor.py
+20
-0
20 additions, 0 deletions
code/bolsonaro/models/omp_forest_regressor.py
code/train.py
+2
-1
2 additions, 1 deletion
code/train.py
with
30 additions
and
3 deletions
code/bolsonaro/models/model_parameters.py
+
8
−
2
View file @
b62b7df7
...
@@ -4,10 +4,11 @@ import os
...
@@ -4,10 +4,11 @@ import os
class
ModelParameters
(
object
):
class
ModelParameters
(
object
):
def
__init__
(
self
,
forest_size
,
extracted_forest_size
,
seed
=
None
):
def
__init__
(
self
,
forest_size
,
extracted_forest_size
,
normalize
,
seed
=
None
):
self
.
_forest_size
=
forest_size
self
.
_forest_size
=
forest_size
self
.
_extracted_forest_size
=
extracted_forest_size
self
.
_extracted_forest_size
=
extracted_forest_size
self
.
_seed
=
seed
self
.
_seed
=
seed
self
.
_normalize
=
normalize
@property
@property
def
forest_size
(
self
):
def
forest_size
(
self
):
...
@@ -21,12 +22,17 @@ class ModelParameters(object):
...
@@ -21,12 +22,17 @@ class ModelParameters(object):
def
seed
(
self
):
def
seed
(
self
):
return
self
.
_seed
return
self
.
_seed
@property
def
normalize
(
self
):
return
self
.
_normalize
def
save
(
self
,
directory_path
,
experiment_id
):
def
save
(
self
,
directory_path
,
experiment_id
):
with
open
(
directory_path
+
os
.
sep
+
'
model_parameters_{}.json
'
.
format
(
experiment_id
),
'
w
'
)
as
output_file
:
with
open
(
directory_path
+
os
.
sep
+
'
model_parameters_{}.json
'
.
format
(
experiment_id
),
'
w
'
)
as
output_file
:
json
.
dump
({
json
.
dump
({
'
forest_size
'
:
self
.
_forest_size
,
'
forest_size
'
:
self
.
_forest_size
,
'
extracted_forest_size
'
:
self
.
_extracted_forest_size
,
'
extracted_forest_size
'
:
self
.
_extracted_forest_size
,
'
seed
'
:
self
.
_seed
'
seed
'
:
self
.
_seed
,
'
normalize
'
:
self
.
_normalize
},
},
output_file
,
output_file
,
indent
=
4
)
indent
=
4
)
This diff is collapsed.
Click to expand it.
code/bolsonaro/models/omp_forest_regressor.py
+
20
−
0
View file @
b62b7df7
...
@@ -3,12 +3,17 @@ from sklearn.linear_model import OrthogonalMatchingPursuit
...
@@ -3,12 +3,17 @@ from sklearn.linear_model import OrthogonalMatchingPursuit
from
sklearn.base
import
BaseEstimator
from
sklearn.base
import
BaseEstimator
import
numpy
as
np
import
numpy
as
np
from
bolsonaro
import
LOG_PATH
from
bolsonaro.error_handling.logger_factory
import
LoggerFactory
class
OmpForestRegressor
(
BaseEstimator
):
class
OmpForestRegressor
(
BaseEstimator
):
def
__init__
(
self
,
models_parameters
):
def
__init__
(
self
,
models_parameters
):
self
.
_regressor
=
RandomForestRegressor
(
n_estimators
=
models_parameters
.
forest_size
,
self
.
_regressor
=
RandomForestRegressor
(
n_estimators
=
models_parameters
.
forest_size
,
random_state
=
models_parameters
.
seed
)
random_state
=
models_parameters
.
seed
)
self
.
_models_parameters
=
models_parameters
self
.
_models_parameters
=
models_parameters
self
.
_logger
=
LoggerFactory
.
create
(
LOG_PATH
,
__name__
)
def
fit
(
self
,
X_train
,
y_train
):
def
fit
(
self
,
X_train
,
y_train
):
self
.
_forest
=
self
.
_train_forest
(
X_train
,
y_train
)
self
.
_forest
=
self
.
_train_forest
(
X_train
,
y_train
)
...
@@ -45,10 +50,25 @@ class OmpForestRegressor(BaseEstimator):
...
@@ -45,10 +50,25 @@ class OmpForestRegressor(BaseEstimator):
:param y_train: (n_sample,) array
:param y_train: (n_sample,) array
:return:
:return:
"""
"""
self
.
_logger
.
debug
(
"
Forest make prediction on X_train
"
)
D
=
np
.
array
([
tree
.
predict
(
X_train
)
for
tree
in
self
.
_forest
]).
T
D
=
np
.
array
([
tree
.
predict
(
X_train
)
for
tree
in
self
.
_forest
]).
T
if
self
.
_models_parameters
.
normalize
:
self
.
_logger
.
debug
(
"
Compute norm of predicted vectors on X_train
"
)
self
.
_forest_norms
=
np
.
linalg
.
norm
(
D
,
axis
=
0
)
D
/=
self
.
_forest_norms
omp
=
OrthogonalMatchingPursuit
(
omp
=
OrthogonalMatchingPursuit
(
n_nonzero_coefs
=
self
.
_models_parameters
.
extracted_forest_size
,
n_nonzero_coefs
=
self
.
_models_parameters
.
extracted_forest_size
,
fit_intercept
=
False
,
normalize
=
False
)
fit_intercept
=
False
,
normalize
=
False
)
self
.
_logger
.
debug
(
"
Apply orthogonal maching pursuit on forest for {} extracted trees.
"
.
format
(
self
.
_models_parameters
.
extracted_forest_size
))
omp
.
fit
(
D
,
y_train
)
omp
.
fit
(
D
,
y_train
)
weights
=
omp
.
coef_
# why not to use directly the omp estimator and bypass it using the coefs?
weights
=
omp
.
coef_
# why not to use directly the omp estimator and bypass it using the coefs?
return
weights
return
weights
def
predict
(
self
):
raise
NotImplementedError
(
"
TODO: implement predict function
"
)
# todo don't forget to deal with the normalize parameter
# should the norm used on train or the new norms be used for normalization?
This diff is collapsed.
Click to expand it.
code/train.py
+
2
−
1
View file @
b62b7df7
...
@@ -92,7 +92,8 @@ if __name__ == "__main__":
...
@@ -92,7 +92,8 @@ if __name__ == "__main__":
model_parameters
=
ModelParameters
(
model_parameters
=
ModelParameters
(
forest_size
=
args
.
forest_size
,
forest_size
=
args
.
forest_size
,
extracted_forest_size
=
extracted_forest_size
,
extracted_forest_size
=
extracted_forest_size
,
seed
=
random_seed
seed
=
random_seed
,
normalize
=
args
.
normalize
)
)
model_parameters
.
save
(
sub_models_dir
,
experiment_id
)
model_parameters
.
save
(
sub_models_dir
,
experiment_id
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment