Newer
Older
from bolsonaro.data.dataset_parameters import DatasetParameters
from bolsonaro.data.dataset_loader import DatasetLoader
from bolsonaro.models.model_factory import ModelFactory
from bolsonaro.models.model_parameters import ModelParameters
from bolsonaro.trainer import Trainer
from bolsonaro.utils import resolve_experiment_id
Charly LAMOTHE
committed
from bolsonaro import LOG_PATH
from bolsonaro.error_handling.logger_factory import LoggerFactory
Luc Giffon
committed
from dotenv import find_dotenv, load_dotenv
Léo Bouscarrat
committed
import json
from concurrent import futures
import threading
Charly LAMOTHE
committed
import json
def process_job(seed, parameters, experiment_id, hyperparameters):
logger = LoggerFactory.create(LOG_PATH, 'training_seed{}_ti{}'.format(
seed, threading.get_ident()))
logger.info('seed={}'.format(seed))
seed_str = str(seed)
experiment_id_str = str(experiment_id)
Charly LAMOTHE
committed
models_dir = parameters['models_dir'] + os.sep + experiment_id_str + os.sep + 'seeds' + \
os.sep + seed_str
pathlib.Path(models_dir).mkdir(parents=True, exist_ok=True)
dataset_parameters = DatasetParameters(
Charly LAMOTHE
committed
name=parameters['dataset_name'],
test_size=parameters['test_size'],
dev_size=parameters['dev_size'],
random_state=seed,
Charly LAMOTHE
committed
dataset_normalizer=parameters['dataset_normalizer']
)
dataset_parameters.save(models_dir, experiment_id_str)
dataset = DatasetLoader.load(dataset_parameters)
trainer = Trainer(dataset)
Charly LAMOTHE
committed
for extracted_forest_size in parameters['extracted_forest_size']:
logger.info('extracted_forest_size={}'.format(extracted_forest_size))
sub_models_dir = models_dir + os.sep + 'extracted_forest_size' + os.sep + str(extracted_forest_size)
pathlib.Path(sub_models_dir).mkdir(parents=True, exist_ok=True)
model_parameters = ModelParameters(
extracted_forest_size=extracted_forest_size,
Charly LAMOTHE
committed
normalize_D=parameters['normalize_D'],
subsets_used=parameters['subsets_used'],
normalize_weights=parameters['normalize_weights'],
)
model_parameters.save(sub_models_dir, experiment_id)
model = ModelFactory.build(dataset.task, model_parameters)
trainer.train(model, sub_models_dir)
logger.info('Training done')
Luc Giffon
committed
# get environment variables in .env
Charly LAMOTHE
committed
load_dotenv(find_dotenv('.env.example'))
Luc Giffon
committed
Charly LAMOTHE
committed
DEFAULT_EXPERIMENT_CONFIGURATION_PATH = 'experiments'
DEFAULT_DATASET_NAME = 'boston'
DEFAULT_NORMALIZE_D = False
DEFAULT_DATASET_NORMALIZER = None
DEFAULT_FOREST_SIZE = 100
DEFAULT_EXTRACTED_FOREST_SIZE = 10
Luc Giffon
committed
# the models will be stored in a directory structure like: models/{experiment_id}/seeds/{seed_nb}/extracted_forest_size/{nb_extracted_trees}
DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models'
DEFAULT_DEV_SIZE = 0.2
DEFAULT_TEST_SIZE = 0.2
DEFAULT_RANDOM_SEED_NUMBER = 1
Charly LAMOTHE
committed
DEFAULT_SUBSETS_USED = 'train,dev'
Charly LAMOTHE
committed
DEFAULT_NORMALIZE_WEIGHTS = False
begin_random_seed_range = 1
end_random_seed_range = 2000
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
Charly LAMOTHE
committed
parser.add_argument('--experiment_configuration', nargs='?', type=str, default=None, help='Specify an experiment configuration file name. Overload all other parameters.')
parser.add_argument('--experiment_configuration_path', nargs='?', type=str, default=DEFAULT_EXPERIMENT_CONFIGURATION_PATH, help='Specify the experiment configuration directory path.')
parser.add_argument('--dataset_name', nargs='?', type=str, default=DEFAULT_DATASET_NAME, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.')
parser.add_argument('--normalize_D', action='store_true', default=DEFAULT_NORMALIZE_D, help='Specify if we want to normalize the prediction of the forest by doing the L2 division of the pred vectors.')
parser.add_argument('--dataset_normalizer', nargs='?', type=str, default=DEFAULT_DATASET_NORMALIZER, help='Specify which dataset normalizer use (either standard, minmax, robust or normalizer).')
parser.add_argument('--forest_size', nargs='?', type=int, default=DEFAULT_FOREST_SIZE, help='The number of trees of the random forest.')
parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=DEFAULT_EXTRACTED_FOREST_SIZE, help='The number of trees selected by OMP.')
parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
parser.add_argument('--dev_size', nargs='?', type=float, default=DEFAULT_DEV_SIZE, help='Dev subset ratio.')
parser.add_argument('--test_size', nargs='?', type=float, default=DEFAULT_TEST_SIZE, help='Test subset ratio.')
parser.add_argument('--random_seed_number', nargs='?', type=int, default=DEFAULT_RANDOM_SEED_NUMBER, help='Number of random seeds used.')
Charly LAMOTHE
committed
parser.add_argument('--seeds', nargs='+', type=int, default=None, help='Specific a list of seeds instead of generate them randomly')
Charly LAMOTHE
committed
parser.add_argument('--subsets_used', nargs='+', type=str, default=DEFAULT_SUBSETS_USED, help='train,dev: forest on train, OMP on dev. train+dev,train+dev: both forest and OMP on train+dev. train,train+dev: forest on train+dev and OMP on dev.')
Charly LAMOTHE
committed
parser.add_argument('--normalize_weights', action='store_true', default=DEFAULT_NORMALIZE_WEIGHTS, help='Divide the predictions by the weights sum.')
Charly LAMOTHE
committed
if args.experiment_configuration:
with open(args.experiment_configuration_path + os.sep + \
args.experiment_configuration + '.json', 'r') as input_file:
parameters = json.load(input_file)
else:
parameters = args.__dict__
pathlib.Path(parameters['models_dir']).mkdir(parents=True, exist_ok=True)
Charly LAMOTHE
committed
logger = LoggerFactory.create(LOG_PATH, os.path.basename(__file__))
Charly LAMOTHE
committed
Charly LAMOTHE
committed
parameters['extracted_forest_size'] = parameters['extracted_forest_size'] \
if type(parameters['extracted_forest_size']) == list \
else [parameters['extracted_forest_size']]
hyperparameters_path = os.path.join('experiments', args.dataset_name, 'stage1', 'params.json')
if os.path.exists(hyperparameters_path):
logger.info("Hyperparameters found for this dataset at '{}'".format(hyperparameters_path))
with open(hyperparameters_path, 'r+') as file_hyperparameter:
Léo Bouscarrat
committed
hyperparameters = json.load(file_hyperparameter)['best_parameters']
else:
hyperparameters = {}
if parameters['forest_size'] is not None:
hyperparameters['n_estimators'] = parameters['forest_size']
Charly LAMOTHE
committed
if parameters['seeds'] != None and parameters['random_seed_number'] > 1:
Charly LAMOTHE
committed
logger.warning('seeds and random_seed_number parameters are both specified. Seeds will be used.')
Charly LAMOTHE
committed
seeds = parameters['seeds'] if parameters['seeds'] is not None \
Charly LAMOTHE
committed
else [random.randint(begin_random_seed_range, end_random_seed_range) \
Charly LAMOTHE
committed
for i in range(parameters['random_seed_number'])]
Charly LAMOTHE
committed
# Resolve the next experiment id number (last id + 1)
experiment_id = resolve_experiment_id(parameters['models_dir'])
logger.info('Experiment id: {}'.format(experiment_id))
Charly LAMOTHE
committed
"""
If the experiment configuration isn't coming from
Charly LAMOTHE
committed
an already existing file, save it to a json file to
keep trace of it.
"""
if args.experiment_configuration is None:
with open(args.experiment_configuration_path + os.sep + 'unnamed_{}.json'.format(
experiment_id), 'w') as output_file:
json.dump(
parameters,
output_file,
indent=4
)
# Train as much job as there are seeds
with futures.ProcessPoolExecutor(len(seeds)) as executor:
list(f.result() for f in futures.as_completed(executor.submit(process_job, seed,
parameters, experiment_id, hyperparameters) for seed in seeds))