from bolsonaro.data.dataset_parameters import DatasetParameters from bolsonaro.data.dataset_loader import DatasetLoader from bolsonaro.models.model_factory import ModelFactory from bolsonaro.models.model_parameters import ModelParameters from bolsonaro.trainer import Trainer from bolsonaro.utils import resolve_experiment_id from bolsonaro import LOG_PATH from bolsonaro.error_handling.logger_factory import LoggerFactory from dotenv import find_dotenv, load_dotenv import argparse import json import pathlib import random import os from concurrent import futures import threading import json def process_job(seed, parameters, experiment_id, hyperparameters): logger = LoggerFactory.create(LOG_PATH, 'training_seed{}_ti{}'.format( seed, threading.get_ident())) logger.info('seed={}'.format(seed)) seed_str = str(seed) experiment_id_str = str(experiment_id) models_dir = parameters['models_dir'] + os.sep + experiment_id_str + os.sep + 'seeds' + \ os.sep + seed_str pathlib.Path(models_dir).mkdir(parents=True, exist_ok=True) dataset_parameters = DatasetParameters( name=parameters['dataset_name'], test_size=parameters['test_size'], dev_size=parameters['dev_size'], random_state=seed, dataset_normalizer=parameters['dataset_normalizer'] ) dataset_parameters.save(models_dir, experiment_id_str) dataset = DatasetLoader.load(dataset_parameters) trainer = Trainer(dataset) for extracted_forest_size in parameters['extracted_forest_size']: logger.info('extracted_forest_size={}'.format(extracted_forest_size)) sub_models_dir = models_dir + os.sep + 'extracted_forest_size' + os.sep + str(extracted_forest_size) pathlib.Path(sub_models_dir).mkdir(parents=True, exist_ok=True) model_parameters = ModelParameters( extracted_forest_size=extracted_forest_size, normalize_D=parameters['normalize_D'], subsets_used=parameters['subsets_used'], normalize_weights=parameters['normalize_weights'], seed=seed, hyperparameters=hyperparameters ) model_parameters.save(sub_models_dir, experiment_id) model = ModelFactory.build(dataset.task, model_parameters) trainer.train(model, sub_models_dir) logger.info('Training done') if __name__ == "__main__": # get environment variables in .env load_dotenv(find_dotenv('.env.example')) DEFAULT_EXPERIMENT_CONFIGURATION_PATH = 'experiments' DEFAULT_DATASET_NAME = 'boston' DEFAULT_NORMALIZE_D = False DEFAULT_DATASET_NORMALIZER = None DEFAULT_FOREST_SIZE = 100 DEFAULT_EXTRACTED_FOREST_SIZE = 10 # the models will be stored in a directory structure like: models/{experiment_id}/seeds/{seed_nb}/extracted_forest_size/{nb_extracted_trees} DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models' DEFAULT_DEV_SIZE = 0.2 DEFAULT_TEST_SIZE = 0.2 DEFAULT_RANDOM_SEED_NUMBER = 1 DEFAULT_SUBSETS_USED = 'train,dev' DEFAULT_NORMALIZE_WEIGHTS = False begin_random_seed_range = 1 end_random_seed_range = 2000 parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--experiment_configuration', nargs='?', type=str, default=None, help='Specify an experiment configuration file name. Overload all other parameters.') parser.add_argument('--experiment_configuration_path', nargs='?', type=str, default=DEFAULT_EXPERIMENT_CONFIGURATION_PATH, help='Specify the experiment configuration directory path.') parser.add_argument('--dataset_name', nargs='?', type=str, default=DEFAULT_DATASET_NAME, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.') parser.add_argument('--normalize_D', action='store_true', default=DEFAULT_NORMALIZE_D, help='Specify if we want to normalize the prediction of the forest by doing the L2 division of the pred vectors.') parser.add_argument('--dataset_normalizer', nargs='?', type=str, default=DEFAULT_DATASET_NORMALIZER, help='Specify which dataset normalizer use (either standard, minmax, robust or normalizer).') parser.add_argument('--forest_size', nargs='?', type=int, default=DEFAULT_FOREST_SIZE, help='The number of trees of the random forest.') parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=DEFAULT_EXTRACTED_FOREST_SIZE, help='The number of trees selected by OMP.') parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.') parser.add_argument('--dev_size', nargs='?', type=float, default=DEFAULT_DEV_SIZE, help='Dev subset ratio.') parser.add_argument('--test_size', nargs='?', type=float, default=DEFAULT_TEST_SIZE, help='Test subset ratio.') parser.add_argument('--random_seed_number', nargs='?', type=int, default=DEFAULT_RANDOM_SEED_NUMBER, help='Number of random seeds used.') parser.add_argument('--seeds', nargs='+', type=int, default=None, help='Specific a list of seeds instead of generate them randomly') parser.add_argument('--subsets_used', nargs='+', type=str, default=DEFAULT_SUBSETS_USED, help='train,dev: forest on train, OMP on dev. train+dev,train+dev: both forest and OMP on train+dev. train,train+dev: forest on train+dev and OMP on dev.') parser.add_argument('--normalize_weights', action='store_true', default=DEFAULT_NORMALIZE_WEIGHTS, help='Divide the predictions by the weights sum.') args = parser.parse_args() if args.experiment_configuration: with open(args.experiment_configuration_path + os.sep + \ args.experiment_configuration + '.json', 'r') as input_file: parameters = json.load(input_file) else: parameters = args.__dict__ pathlib.Path(parameters['models_dir']).mkdir(parents=True, exist_ok=True) logger = LoggerFactory.create(LOG_PATH, os.path.basename(__file__)) parameters['extracted_forest_size'] = parameters['extracted_forest_size'] \ if type(parameters['extracted_forest_size']) == list \ else [parameters['extracted_forest_size']] hyperparameters_path = os.path.join('experiments', args.dataset_name, 'stage1', 'params.json') if os.path.exists(hyperparameters_path): logger.info("Hyperparameters found for this dataset at '{}'".format(hyperparameters_path)) with open(hyperparameters_path, 'r+') as file_hyperparameter: hyperparameters = json.load(file_hyperparameter)['best_parameters'] else: hyperparameters = {} if parameters['forest_size'] is not None: hyperparameters['n_estimators'] = parameters['forest_size'] if parameters['seeds'] != None and parameters['random_seed_number'] > 1: logger.warning('seeds and random_seed_number parameters are both specified. Seeds will be used.') seeds = parameters['seeds'] if parameters['seeds'] is not None \ else [random.randint(begin_random_seed_range, end_random_seed_range) \ for i in range(parameters['random_seed_number'])] # Resolve the next experiment id number (last id + 1) experiment_id = resolve_experiment_id(parameters['models_dir']) logger.info('Experiment id: {}'.format(experiment_id)) """ If the experiment configuration isn't coming from an already existing file, save it to a json file to keep trace of it. """ if args.experiment_configuration is None: with open(args.experiment_configuration_path + os.sep + 'unnamed_{}.json'.format( experiment_id), 'w') as output_file: json.dump( parameters, output_file, indent=4 ) # Train as much job as there are seeds with futures.ProcessPoolExecutor(len(seeds)) as executor: list(f.result() for f in futures.as_completed(executor.submit(process_job, seed, parameters, experiment_id, hyperparameters) for seed in seeds))