Newer
Older
Charly LAMOTHE
committed
from bolsonaro.models.model_raw_results import ModelRawResults
from bolsonaro.visualization.plotter import Plotter
from bolsonaro import LOG_PATH
from bolsonaro.error_handling.logger_factory import LoggerFactory
from bolsonaro.data.dataset_parameters import DatasetParameters
from bolsonaro.data.dataset_loader import DatasetLoader
Charly LAMOTHE
committed
import argparse
import pathlib
Charly LAMOTHE
committed
from dotenv import find_dotenv, load_dotenv
import os
Charly Lamothe
committed
import numpy as np
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pickle
from tqdm import tqdm
from scipy.stats import rankdata
from pyrsa.vis.colors import rdm_colormap
from pyrsa.rdm.calc import calc_rdm
from pyrsa.data.dataset import Dataset
import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.preprocessing import normalize
def vect2triu(dsm_vect, dim=None):
if not dim:
# sqrt(X²) \simeq sqrt(X²-X) -> sqrt(X²) = ceil(sqrt(X²-X))
dim = int(np.ceil(np.sqrt(dsm_vect.shape[1] * 2)))
dsm = np.zeros((dim,dim))
ind_up = np.triu_indices(dim, 1)
dsm[ind_up] = dsm_vect
return dsm
def triu2full(dsm_triu):
dsm_full = np.copy(dsm_triu)
ind_low = np.tril_indices(dsm_full.shape[0], -1)
dsm_full[ind_low] = dsm_full.T[ind_low]
return dsm_full
def plot_RDM(rdm, file_path, condition_number):
rdm = triu2full(vect2triu(rdm, condition_number))
fig = plt.figure()
cols = rdm_colormap(condition_number)
plt.imshow(rdm, cmap=cols)
plt.colorbar()
plt.savefig(file_path, dpi=200)
plt.close()
Charly Lamothe
committed
def retreive_extracted_forest_sizes_number(models_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
seed = os.listdir(experiment_seed_root_path)[0]
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes'
return len(os.listdir(extracted_forest_sizes_root_path))
Charly Lamothe
committed
def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_dir, experiment_id, weights=True, extracted_forest_sizes=list()):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
"""
Dictionaries to temporarly store the scalar results with the following structure:
{seed_1: [score_1, ..., score_m], ... seed_n: [score_1, ..., score_k]}
"""
experiment_train_scores = dict()
experiment_dev_scores = dict()
experiment_test_scores = dict()
all_extracted_forest_sizes = list()
# Used to check if all losses were computed using the same metric (it should be the case)
experiment_score_metrics = list()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_train_scores[seed] = list()
experiment_dev_scores[seed] = list()
experiment_test_scores[seed] = list()
Charly Lamothe
committed
if len(extracted_forest_sizes) == 0:
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
all_extracted_forest_sizes.append(list(map(int, extracted_forest_sizes)))
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
if weights:
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
else:
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size + '_no_weights'
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
# Save the scores
experiment_train_scores[seed].append(model_raw_results.train_score)
experiment_dev_scores[seed].append(model_raw_results.dev_score)
experiment_test_scores[seed].append(model_raw_results.test_score)
# Save the metric
experiment_score_metrics.append(model_raw_results.score_metric)
# Sanity checks
if len(set(experiment_score_metrics)) > 1:
raise ValueError("The metrics used to compute the scores aren't the sames across seeds.")
if len(set([sum(extracted_forest_sizes) for extracted_forest_sizes in all_extracted_forest_sizes])) != 1:
raise ValueError("The extracted forest sizes aren't the sames across seeds.")
return experiment_train_scores, experiment_dev_scores, experiment_test_scores, \
all_extracted_forest_sizes[0], experiment_score_metrics[0]
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def extract_scores_across_seeds_and_forest_size(models_dir, results_dir, experiment_id, extracted_forest_sizes_number):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
"""
Dictionaries to temporarly store the scalar results with the following structure:
{seed_1: [score_1, ..., score_m], ... seed_n: [score_1, ..., score_k]}
"""
experiment_train_scores = dict()
experiment_dev_scores = dict()
experiment_test_scores = dict()
# Used to check if all losses were computed using the same metric (it should be the case)
experiment_score_metrics = list()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
forest_size_root_path = experiment_seed_path + os.sep + 'forest_size' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_train_scores[seed] = list()
experiment_dev_scores[seed] = list()
experiment_test_scores[seed] = list()
forest_size = os.listdir(forest_size_root_path)[0]
# models/{experiment_id}/seeds/{seed}/forest_size/{forest_size}
forest_size_path = forest_size_root_path + os.sep + forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(forest_size_path)
for _ in range(extracted_forest_sizes_number):
# Save the scores
experiment_train_scores[seed].append(model_raw_results.train_score)
experiment_dev_scores[seed].append(model_raw_results.dev_score)
experiment_test_scores[seed].append(model_raw_results.test_score)
# Save the metric
experiment_score_metrics.append(model_raw_results.score_metric)
if len(set(experiment_score_metrics)) > 1:
raise ValueError("The metrics used to compute the scores aren't the same everytime")
return experiment_train_scores, experiment_dev_scores, experiment_test_scores, experiment_score_metrics[0]
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def extract_weights_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_weights = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_weights[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
# Save the weights
experiment_weights[seed].append(model_raw_results.model_weights)
return experiment_weights
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def extract_correlations_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_correlations = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_correlations[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
experiment_correlations[seed].append(model_raw_results.correlation)
return experiment_correlations
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def extract_coherences_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_coherences = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_coherences[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
experiment_coherences[seed].append(model_raw_results.coherence)
return experiment_coherences
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
def extract_selected_trees_scores_across_seeds(models_dir, results_dir, experiment_id, weighted=False):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_selected_trees_scores = dict()
print(f'[extract_selected_trees_scores_across_seeds] experiment_id: {experiment_id}')
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
with tqdm(seeds) as seed_bar:
for seed in seed_bar:
seed_bar.set_description(f'seed: {seed}')
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
dataset_parameters = DatasetParameters.load(experiment_seed_path, experiment_id)
dataset = DatasetLoader.load(dataset_parameters)
# {{seed}:[]}
experiment_selected_trees_scores[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree]
extracted_forest_sizes.sort(key=int)
with tqdm(extracted_forest_sizes) as extracted_forest_size_bar:
for extracted_forest_size in extracted_forest_size_bar:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
selected_trees = None
with open(os.path.join(extracted_forest_size_path, 'selected_trees.pickle'), 'rb') as file:
selected_trees = pickle.load(file)
selected_trees_test_scores = np.array([tree.score(dataset.X_test, dataset.y_test) for tree in selected_trees])
if weighted:
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
weights = model_raw_results.model_weights
if type(weights) != str:
weights = weights[weights != 0]
score = np.mean(np.square(selected_trees_test_scores * weights))
else:
score = np.mean(np.square(selected_trees_test_scores))
else:
score = np.mean(selected_trees_test_scores)
experiment_selected_trees_scores[seed].append(score)
extracted_forest_size_bar.set_description(f'extracted_forest_size: {extracted_forest_size} - test_score: {round(score, 2)}')
extracted_forest_size_bar.update(1)
seed_bar.update(1)
return experiment_selected_trees_scores
def extract_selected_trees_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_selected_trees = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
with tqdm(seeds) as seed_bar:
for seed in seed_bar:
seed_bar.set_description(f'seed: {seed}')
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
dataset_parameters = DatasetParameters.load(experiment_seed_path, experiment_id)
dataset = DatasetLoader.load(dataset_parameters)
# {{seed}:[]}
experiment_selected_trees[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
all_selected_trees_predictions = list()
with tqdm(extracted_forest_sizes) as extracted_forest_size_bar:
for extracted_forest_size in extracted_forest_size_bar:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
selected_trees = None
with open(os.path.join(extracted_forest_size_path, 'selected_trees.pickle'), 'rb') as file:
selected_trees = pickle.load(file)
#test_score = np.mean([tree.score(dataset.X_test, dataset.y_test) for tree in selected_trees])
#selected_trees_predictions = np.array([tree.score(dataset.X_test, dataset.y_test) for tree in selected_trees])
selected_trees_predictions = [tree.predict(dataset.X_test) for tree in selected_trees]
extracted_forest_size_bar.set_description(f'extracted_forest_size: {extracted_forest_size}')
#experiment_selected_trees[seed].append(test_score)
extracted_forest_size_bar.update(1)
selected_trees_predictions = np.array(selected_trees_predictions)
selected_trees_predictions = normalize(selected_trees_predictions)
"""mds = MDS(len(selected_trees_predictions))
Y = mds.fit_transform(selected_trees_predictions)
plt.scatter(Y[:, 0], Y[:, 1])
plt.savefig(f'test_mds_{experiment_id}.png')"""
if int(extracted_forest_size) <= 267:
forest_RDM = calc_rdm(Dataset(selected_trees_predictions), method='euclidean').get_vectors()
ranked_forest_RDM = np.apply_along_axis(rankdata, 1, forest_RDM.reshape(1, -1))
from scipy.cluster import hierarchy
RDM = triu2full(vect2triu(ranked_forest_RDM, int(extracted_forest_size)))
Z = hierarchy.linkage(RDM, 'average')
fig = plt.figure(figsize=(15, 8))
dn = hierarchy.dendrogram(Z)
plt.savefig(f'test_dendrogram_scores_id:{experiment_id}_seed:{seed}_size:{extracted_forest_size}.png')
plt.close()
plot_RDM(
rdm=ranked_forest_RDM,
file_path=f'test_scores_ranked_forest_RDM_id:{experiment_id}_seed:{seed}_size:{extracted_forest_size}.png',
condition_number=len(selected_trees_predictions)
)
break
seed_bar.update(1)
return experiment_selected_trees
if __name__ == "__main__":
Charly LAMOTHE
committed
# get environment variables in .env
Charly LAMOTHE
committed
DEFAULT_RESULTS_DIR = os.environ["project_dir"] + os.sep + 'results'
DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models'
Charly Lamothe
committed
DEFAULT_WO_LOSS_PLOTS = False
DEFAULT_PLOT_PREDS_COHERENCE = False
DEFAULT_PLOT_FOREST_STRENGTH = False
DEFAULT_COMPUTE_SELECTED_TREES_RDMS = False
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--stage', nargs='?', type=int, required=True, help='Specify the stage number among [1, 5].')
Charly Lamothe
committed
parser.add_argument('--experiment_ids', nargs='+', type=str, required=True, help='Compute the results of the specified experiment id(s).' + \
'stage=1: {{base_with_params}} {{random_with_params}} {{omp_with_params}} {{base_wo_params}} {{random_wo_params}} {{omp_wo_params}}' + \
'stage=2: {{no_normalization}} {{normalize_D}} {{normalize_weights}} {{normalize_D_and_weights}}' + \
Charly Lamothe
committed
'stage=3: {{train-dev_subset}} {{train-dev_train-dev_subset}} {{train-train-dev_subset}}' + \
'stage=5: {{base_with_params}} {{random_with_params}} {{omp_with_params}} [ensemble={{id}}] [similarity={{id}}] [kmean={{id}}]')
parser.add_argument('--dataset_name', nargs='?', type=str, required=True, help='Specify the dataset name. TODO: read it from models dir directly.')
parser.add_argument('--results_dir', nargs='?', type=str, default=DEFAULT_RESULTS_DIR, help='The output directory of the results.')
parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
parser.add_argument('--plot_weight_density', action='store_true', default=DEFAULT_PLOT_WEIGHT_DENSITY, help='Plot the weight density. Only working for regressor models for now.')
Charly Lamothe
committed
parser.add_argument('--wo_loss_plots', action='store_true', default=DEFAULT_WO_LOSS_PLOTS, help='Do not compute the loss plots.')
parser.add_argument('--plot_preds_coherence', action='store_true', default=DEFAULT_PLOT_PREDS_COHERENCE, help='Plot the coherence of the prediction trees.')
parser.add_argument('--plot_preds_correlation', action='store_true', default=DEFAULT_PLOT_PREDS_COHERENCE, help='Plot the correlation of the prediction trees.')
parser.add_argument('--plot_forest_strength', action='store_true', default=DEFAULT_PLOT_FOREST_STRENGTH, help='Plot the strength of the extracted forest.')
parser.add_argument('--compute_selected_trees_rdms', action='store_true', default=DEFAULT_COMPUTE_SELECTED_TREES_RDMS, help='Representation similarity analysis of the selected trees')
args = parser.parse_args()
if args.stage not in list(range(1, 6)):
raise ValueError('stage must be a supported stage id (i.e. [1, 5]).')
logger = LoggerFactory.create(LOG_PATH, os.path.basename(__file__))
Charly Lamothe
committed
logger.info('Compute results of with stage:{} - experiment_ids:{} - dataset_name:{} - results_dir:{} - models_dir:{}'.format(
args.stage, args.experiment_ids, args.dataset_name, args.results_dir, args.models_dir))
# Create recursively the results dir tree
pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True)
Charly Lamothe
committed
if args.stage == 1 and not args.wo_loss_plots:
if len(args.experiment_ids) != 6:
raise ValueError('In the case of stage 1, the number of specified experiment ids must be 6.')
Charly Lamothe
committed
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
Charly Lamothe
committed
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, int(args.experiment_ids[1]))
Charly Lamothe
committed
# Experiments that used the best hyperparameters found for this dataset
Charly Lamothe
committed
# base_with_params
logger.info('Loading base_with_params experiment scores...')
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
Charly Lamothe
committed
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, int(args.experiment_ids[0]),
Charly Lamothe
committed
extracted_forest_sizes_number)
Charly Lamothe
committed
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
with_params_extracted_forest_sizes, random_with_params_experiment_score_metric = \
Charly Lamothe
committed
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, int(args.experiment_ids[1]))
Charly Lamothe
committed
# omp_with_params
logger.info('Loading omp_with_params experiment scores...')
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[2]))
# Experiments that didn't use the best hyperparameters found for this dataset
Charly Lamothe
committed
# base_wo_params
logger.info('Loading base_wo_params experiment scores...')
base_wo_params_train_scores, base_wo_params_dev_scores, base_wo_params_test_scores, \
base_wo_params_experiment_score_metric = extract_scores_across_seeds_and_forest_size(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[3]),
Charly Lamothe
committed
extracted_forest_sizes_number)
Charly Lamothe
committed
# random_wo_params
logger.info('Loading random_wo_params experiment scores...')
random_wo_params_train_scores, random_wo_params_dev_scores, random_wo_params_test_scores, \
wo_params_extracted_forest_sizes, random_wo_params_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[4]))
Charly Lamothe
committed
# omp_wo_params
logger.info('Loading omp_wo_params experiment scores...')
omp_wo_params_train_scores, omp_wo_params_dev_scores, omp_wo_params_test_scores, _, \
omp_wo_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[5]))
# Sanity check on the metrics retreived
if not (base_with_params_experiment_score_metric == random_with_params_experiment_score_metric ==
omp_with_params_experiment_score_metric == base_wo_params_experiment_score_metric ==
random_wo_params_experiment_score_metric ==
omp_wo_params_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = base_with_params_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage1')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
"""all_experiment_scores_with_params=[base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores,
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores,
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores],
all_experiment_scores_wo_params=[base_wo_params_train_scores, base_wo_params_dev_scores, base_wo_params_test_scores,
random_wo_params_train_scores, random_wo_params_dev_scores, random_wo_params_test_scores,
omp_wo_params_train_scores, omp_wo_params_dev_scores, omp_wo_params_test_scores],
all_labels=['base_with_params_train', 'base_with_params_dev', 'base_with_params_test',
'random_with_params_train', 'random_with_params_dev', 'random_with_params_test',
'omp_with_params_train', 'omp_with_params_dev', 'omp_with_params_test'],"""
Plotter.plot_stage1_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores_with_params=[base_with_params_test_scores,
random_with_params_test_scores,
omp_with_params_test_scores],
all_experiment_scores_wo_params=[base_wo_params_test_scores,
random_wo_params_test_scores,
omp_wo_params_test_scores],
all_labels=['base', 'random', 'omp'],
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
Charly Lamothe
committed
title='Loss values of {}\nusing best and default hyperparameters'.format(args.dataset_name)
Charly Lamothe
committed
elif args.stage == 2 and not args.wo_loss_plots:
if len(args.experiment_ids) != 4:
raise ValueError('In the case of stage 2, the number of specified experiment ids must be 4.')
# no_normalization
logger.info('Loading no_normalization experiment scores...')
_, _, no_normalization_test_scores, extracted_forest_sizes, no_normalization_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[0]))
# normalize_D
logger.info('Loading normalize_D experiment scores...')
_, _, normalize_D_test_scores, _, normalize_D_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[1]))
# normalize_weights
logger.info('Loading normalize_weights experiment scores...')
_, _, normalize_weights_test_scores, _, normalize_weights_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[2]))
# normalize_D_and_weights
logger.info('Loading normalize_D_and_weights experiment scores...')
_, _, normalize_D_and_weights_test_scores, _, normalize_D_and_weights_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[3]))
# Sanity check on the metrics retreived
if not (no_normalization_experiment_score_metric == normalize_D_experiment_score_metric
== normalize_weights_experiment_score_metric == normalize_D_and_weights_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = no_normalization_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage2')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[no_normalization_test_scores, normalize_D_test_scores,
normalize_weights_test_scores, normalize_D_and_weights_test_scores],
all_labels=['no_normalization', 'normalize_D', 'normalize_weights', 'normalize_D_and_weights'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different normalizations'.format(args.dataset_name))
Charly Lamothe
committed
elif args.stage == 3 and not args.wo_loss_plots:
if len(args.experiment_ids) != 3:
raise ValueError('In the case of stage 3, the number of specified experiment ids must be 3.')
# train-dev_subset
logger.info('Loading train-dev_subset experiment scores...')
train_dev_subset_train_scores, train_dev_subset_dev_scores, train_dev_subset_test_scores, \
extracted_forest_sizes, train_dev_subset_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[0]))
# train-dev_train-dev_subset
logger.info('Loading train-dev_train-dev_subset experiment scores...')
train_dev_train_dev_subset_train_scores, train_dev_train_dev_subset_dev_scores, train_dev_train_dev_subset_test_scores, \
_, train_dev_train_dev_subset_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[1]))
# train-train-dev_subset
logger.info('Loading train-train-dev_subset experiment scores...')
train_train_dev_subset_train_scores, train_train_dev_subset_dev_scores, train_train_dev_subset_test_scores, \
_, train_train_dev_subset_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
Charly Lamothe
committed
int(args.experiment_ids[2]))
# Sanity check on the metrics retreived
if not (train_dev_subset_experiment_score_metric == train_dev_train_dev_subset_experiment_score_metric
== train_train_dev_subset_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = train_dev_subset_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage3')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
Charly Lamothe
committed
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[train_dev_subset_test_scores, train_dev_train_dev_subset_test_scores,
train_train_dev_subset_test_scores],
all_labels=['train,dev', 'train+dev,train+dev', 'train,train+dev'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))
"""Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[train_dev_subset_train_scores, train_train_dev_subset_train_scores,
train_train_dev_subset_train_scores, train_dev_subset_dev_scores, train_dev_train_dev_subset_dev_scores,
train_train_dev_subset_dev_scores, train_dev_subset_test_scores, train_dev_train_dev_subset_test_scores,
train_train_dev_subset_test_scores],
all_labels=['train,dev - train', 'train+dev,train+dev - train', 'train,train+dev - train',
'train,dev - dev', 'train+dev,train+dev - dev', 'train,train+dev - dev',
'train,dev - test', 'train+dev,train+dev - test', 'train,train+dev - test'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
Charly Lamothe
committed
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))"""
Charly Lamothe
committed
elif args.stage == 4 and not args.wo_loss_plots:
if len(args.experiment_ids) != 3:
raise ValueError('In the case of stage 4, the number of specified experiment ids must be 3.')
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, args.experiment_ids[1])
# base_with_params
logger.info('Loading base_with_params experiment scores...')
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
Charly Lamothe
committed
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, int(args.experiment_ids[0]),
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
with_params_extracted_forest_sizes, random_with_params_experiment_score_metric = \
Charly Lamothe
committed
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, int(args.experiment_ids[1]))
# omp_with_params
logger.info('Loading omp_with_params experiment scores...')
"""omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric, experiment_weights = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, args.experiment_ids[2])"""
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[2]))
Charly Lamothe
committed
logger.info('Loading omp_with_params without weights experiment scores...')
omp_with_params_without_weights_train_scores, omp_with_params_without_weights_dev_scores, omp_with_params_without_weights_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[2]), weights=False)
"""# base_with_params
Charly Lamothe
committed
logger.info('Loading base_with_params experiment scores 2...')
_, _, base_with_params_test_scores_2, \
_ = \
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, args.experiment_ids[3],
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores 2...')
_, _, random_with_params_test_scores_2, \
_, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, args.experiment_ids[4])"""
Charly Lamothe
committed
# Sanity check on the metrics retreived
if not (base_with_params_experiment_score_metric == random_with_params_experiment_score_metric
== omp_with_params_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = base_with_params_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage4')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[base_with_params_test_scores, random_with_params_test_scores, omp_with_params_test_scores,
omp_with_params_without_weights_test_scores],
all_labels=['base', 'random', 'omp', 'omp_without_weights'],
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing best params of previous stages'.format(args.dataset_name))
Charly Lamothe
committed
elif args.stage == 5 and not args.wo_loss_plots:
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
Charly Lamothe
committed
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, int(args.experiment_ids[1]))
all_labels = list()
all_scores = list()
Charly Lamothe
committed
"""extracted_forest_sizes = np.unique(np.around(1000 *
np.linspace(0, 1.0,
30 + 1,
endpoint=True)[1:]).astype(np.int)).tolist()"""
Charly Lamothe
committed
#extracted_forest_sizes = [4, 7, 11, 14, 18, 22, 25, 29, 32, 36, 40, 43, 47, 50, 54, 58, 61, 65, 68, 72, 76, 79, 83, 86, 90, 94, 97, 101, 104, 108]
Charly Lamothe
committed
Charly Lamothe
committed
#extracted_forest_sizes = [str(forest_size) for forest_size in extracted_forest_sizes]
extracted_forest_sizes= list()
Charly Lamothe
committed
# base_with_params
logger.info('Loading base_with_params experiment scores...')
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
Charly Lamothe
committed
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, int(args.experiment_ids[0]),
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
with_params_extracted_forest_sizes, random_with_params_experiment_score_metric = \
Charly Lamothe
committed
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, int(args.experiment_ids[1]),
extracted_forest_sizes=extracted_forest_sizes)
# omp_with_params
logger.info('Loading omp_with_params experiment scores...')
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[2]), extracted_forest_sizes=extracted_forest_sizes)
#omp_with_params_without_weights
logger.info('Loading omp_with_params without weights experiment scores...')
omp_with_params_without_weights_train_scores, omp_with_params_without_weights_dev_scores, omp_with_params_without_weights_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, int(args.experiment_ids[2]), weights=False, extracted_forest_sizes=extracted_forest_sizes)
Charly Lamothe
committed
"""print(omp_with_params_dev_scores)
import sys
sys.exit(0)"""
all_labels = ['base', 'random', 'omp', 'omp_wo_weights']
#all_labels = ['base', 'random', 'omp']
omp_with_params_test_scores_new = dict()
filter_num = -1
"""filter_num = 9
for key, value in omp_with_params_test_scores.items():
omp_with_params_test_scores_new[key] = value[:filter_num]"""
all_scores = [base_with_params_test_scores, random_with_params_test_scores, omp_with_params_test_scores,
omp_with_params_without_weights_test_scores]
#all_scores = [base_with_params_dev_scores, random_with_params_dev_scores, omp_with_params_dev_scores,
# omp_with_params_without_weights_dev_scores]
Charly Lamothe
committed
#all_scores = [base_with_params_train_scores, random_with_params_train_scores, omp_with_params_train_scores,
# omp_with_params_without_weights_train_scores]
Charly Lamothe
committed
for i in range(3, len(args.experiment_ids)):
if 'kmeans' in args.experiment_ids[i]:
label = 'kmeans'
Charly Lamothe
committed
elif 'similarity_similarities' in args.experiment_ids[i]:
label = 'similarity_similarities'
elif 'similarity_predictions' in args.experiment_ids[i]:
label = 'similarity_predictions'
Charly Lamothe
committed
elif 'ensemble' in args.experiment_ids[i]:
label = 'ensemble'
elif 'omp_distillation' in args.experiment_ids[i]:
label = 'omp_distillation'
Charly Lamothe
committed
else:
logger.error('Invalid value encountered')
continue
Charly Lamothe
committed
logger.info(f'Loading {label} experiment scores...')
Charly Lamothe
committed
current_experiment_id = int(args.experiment_ids[i].split('=')[1])
current_train_scores, current_dev_scores, current_test_scores, _, _ = extract_scores_across_seeds_and_extracted_forest_sizes(
Charly Lamothe
committed
args.models_dir, args.results_dir, current_experiment_id)
Charly Lamothe
committed
all_labels.append(label)
all_scores.append(current_test_scores)
Charly Lamothe
committed
#all_scores.append(current_train_scores)
#all_scores.append(current_dev_scores)
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage5_test_train,dev')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + f"losses_{'-'.join(all_labels)}_test_train,dev.png",
Charly Lamothe
committed
all_experiment_scores=all_scores,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
Charly Lamothe
committed
ylabel=base_with_params_experiment_score_metric,
title='Loss values of {}\nusing best params of previous stages'.format(args.dataset_name), filter_num=filter_num)
Charly Lamothe
committed
"""if args.plot_weight_density:
Charly Lamothe
committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage{args.stage}')
if args.stage == 1:
omp_experiment_ids = [('omp_with_params', args.experiment_ids[2]), ('omp_wo_params', args.experiment_ids[2])]
elif args.stage == 2:
omp_experiment_ids = [('no_normalization', args.experiment_ids[0]),
('normalize_D', args.experiment_ids[1]),
('normalize_weights', args.experiment_ids[2]),
('normalize_D_and_weights', args.experiment_ids[3])]
elif args.stage == 3:
omp_experiment_ids = [('train-dev_subset', args.experiment_ids[0]),
('train-dev_train-dev_subset', args.experiment_ids[1]),
('train-train-dev_subset', args.experiment_ids[2])]
elif args.stage == 4:
omp_experiment_ids = [('omp_with_params', args.experiment_ids[2])]
elif args.stage == 5:
omp_experiment_ids = [('omp_with_params', args.experiment_ids[2])]
for i in range(3, len(args.experiment_ids)):
if 'kmeans' in args.experiment_ids[i]:
label = 'kmeans'
elif 'similarity' in args.experiment_ids[i]:
label = 'similarity'
elif 'ensemble' in args.experiment_ids[i]:
label = 'ensemble'
else:
logger.error('Invalid value encountered')
continue
current_experiment_id = int(args.experiment_ids[i].split('=')[1])
omp_experiment_ids.append((label, current_experiment_id))
for (experiment_label, experiment_id) in omp_experiment_ids:
logger.info(f'Computing weight density plot for experiment {experiment_label}...')
experiment_weights = extract_weights_across_seeds(args.models_dir, args.results_dir, experiment_id)
Plotter.weight_density(experiment_weights, os.path.join(root_output_path, f'weight_density_{experiment_label}.png'))"""
if args.plot_weight_density:
logger.info(f'Computing weight density plot for experiment {experiment_label}...')
experiment_weights = extract_weights_across_seeds(args.models_dir, args.results_dir, experiment_id)
Plotter.weight_density(experiment_weights, os.path.join(root_output_path, f'weight_density_{experiment_label}.png'))
if args.plot_preds_coherence:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_new')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
all_labels = ['random', 'omp', 'kmeans', 'similarity_similarities', 'similarity_predictions', 'ensemble']
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
coherence_values = [extract_coherences_across_seeds(args.models_dir, args.results_dir, i) for i in args.experiment_ids]
Plotter.plot_stage2_losses(
file_path=root_output_path + os.sep + f"coherences_{'-'.join(all_labels)}.png",
all_experiment_scores=coherence_values,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel='Coherence',
title='Coherence values of {}'.format(args.dataset_name))
logger.info(f'Computing preds coherence plot...')
if args.plot_preds_correlation:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_new')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
all_labels = ['none', 'random', 'omp', 'kmeans', 'similarity_similarities', 'similarity_predictions', 'ensemble']
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
correlation_values = [extract_correlations_across_seeds(args.models_dir, args.results_dir, i) for i in args.experiment_ids]
Plotter.plot_stage2_losses(
file_path=root_output_path + os.sep + f"correlations_{'-'.join(all_labels)}.png",
all_experiment_scores=correlation_values,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel='correlation',
title='correlation values of {}'.format(args.dataset_name))
logger.info(f'Computing preds correlation plot...')
Charly LAMOTHE
committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
if args.plot_forest_strength:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_strength')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
#all_selected_trees_scores = list()
#all_selected_trees_weighted_scores = list()
"""with tqdm(args.experiment_ids) as experiment_id_bar:
for experiment_id in experiment_id_bar:
experiment_id_bar.set_description(f'experiment_id: {experiment_id}')
selected_trees_scores, selected_trees_weighted_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, experiment_id)
all_selected_trees_scores.append(selected_trees_scores)
all_selected_trees_weighted_scores.append(selected_trees_weighted_scores)
experiment_id_bar.update(1)"""
#random_selected_trees_scores = extract_selected_trees_scores_across_seeds(
# args.models_dir, args.results_dir, 2, weighted=True)
omp_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 3, weighted=True)
similarity_similarities_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 6, weighted=True)
#similarity_predictions_selected_trees_scores = extract_selected_trees_scores_across_seeds(
# args.models_dir, args.results_dir, 7)
ensemble_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 8, weighted=True)
# kmeans=5
# similarity_similarities=6
# similarity_predictions=7
# ensemble=8
all_selected_trees_scores = [random_selected_trees_scores, omp_selected_trees_scores, similarity_similarities_selected_trees_scores,
ensemble_selected_trees_scores]
with open('california_housing_forest_strength_scores.pickle', 'wb') as file:
pickle.dump(all_selected_trees_scores, file)
"""with open('forest_strength_scores.pickle', 'rb') as file:
all_selected_trees_scores = pickle.load(file)"""
all_labels = ['random', 'omp', 'similarity_similarities', 'ensemble']
Plotter.plot_stage2_losses(
file_path=root_output_path + os.sep + f"forest_strength_{'-'.join(all_labels)}_v2_sota.png",
all_experiment_scores=all_selected_trees_scores,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel='Mean of selected tree scores on test set',
title='Forest strength of {}'.format(args.dataset_name))
if args.compute_selected_trees_rdms:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_strength')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
all_selected_trees_scores = list()
with tqdm([2, 3, 8]) as experiment_id_bar:
for experiment_id in experiment_id_bar:
experiment_id_bar.set_description(f'experiment_id: {experiment_id}')
all_selected_trees_scores.append(extract_selected_trees_across_seeds(
args.models_dir, args.results_dir, experiment_id))
experiment_id_bar.update(1)
with open('forest_strength_scores.pickle', 'rb') as file:
all_selected_trees_scores = pickle.load(file)
Charly Lamothe
committed
logger.info('Done.')