Skip to content
Snippets Groups Projects
Commit 559d73c0 authored by Charly Lamothe's avatar Charly Lamothe
Browse files

- Remove extracted_forest_sizes_number parameter from compute_results.py and...

- Remove extracted_forest_sizes_number parameter from compute_results.py and retreive the value instead;
- Add almost all remaining experiment config files of stages 1, 2 and 3;
- Add almost all remaining result plots of stages 1, 2 and 3;
- Add some temporary scripts to run all stages experiments.
parent 8de5e96a
No related branches found
No related tags found
1 merge request!9Resolve "Experiment pipeline"
Showing
with 737 additions and 10 deletions
......@@ -9,6 +9,14 @@ from dotenv import find_dotenv, load_dotenv
import os
def retreive_extracted_forest_sizes_number(models_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
seed = os.listdir(experiment_seed_root_path)[0]
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes'
return len(os.listdir(extracted_forest_sizes_root_path))
def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
......@@ -120,7 +128,6 @@ if __name__ == "__main__":
'stage=2: {{no_normalization}} {{normalize_D}} {{normalize_weights}} {{normalize_D_and_weights}}' + \
'stage=3: {{train-dev_subset}} {{train-dev_train-dev_subset}} {{train-train-dev_subset}}')
parser.add_argument('--dataset_name', nargs='?', type=str, required=True, help='Specify the dataset name. TODO: read it from models dir directly.')
parser.add_argument('--extracted_forest_sizes_number', nargs='?', type=int, required=True, help='Specify the number of extracted forest sizes. TODO: read it from models dir directly.')
parser.add_argument('--results_dir', nargs='?', type=str, default=DEFAULT_RESULTS_DIR, help='The output directory of the results.')
parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
args = parser.parse_args()
......@@ -130,6 +137,9 @@ if __name__ == "__main__":
logger = LoggerFactory.create(LOG_PATH, os.path.basename(__file__))
logger.info('Compute results of with stage:{} - experiment_ids:{} - dataset_name:{} - results_dir:{} - models_dir:{}'.format(
args.stage, args.experiment_ids, args.dataset_name, args.results_dir, args.models_dir))
# Create recursively the results dir tree
pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True)
......@@ -137,6 +147,9 @@ if __name__ == "__main__":
if len(args.experiment_ids) != 6:
raise ValueError('In the case of stage 1, the number of specified experiment ids must be 6.')
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, args.experiment_ids[1])
# Experiments that used the best hyperparameters found for this dataset
# base_with_params
......@@ -144,7 +157,7 @@ if __name__ == "__main__":
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, args.experiment_ids[0],
args.extracted_forest_sizes_number)
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
......@@ -163,7 +176,7 @@ if __name__ == "__main__":
base_wo_params_train_scores, base_wo_params_dev_scores, base_wo_params_test_scores, \
base_wo_params_experiment_score_metric = extract_scores_across_seeds_and_forest_size(
args.models_dir, args.results_dir, args.experiment_ids[3],
args.extracted_forest_sizes_number)
extracted_forest_sizes_number)
# random_wo_params
logger.info('Loading random_wo_params experiment scores...')
random_wo_params_train_scores, random_wo_params_dev_scores, random_wo_params_test_scores, \
......@@ -292,6 +305,16 @@ if __name__ == "__main__":
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[train_dev_subset_test_scores, train_dev_train_dev_subset_test_scores,
train_train_dev_subset_test_scores],
all_labels=['train,dev', 'train+dev,train+dev', 'train,train+dev'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))
"""Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[train_dev_subset_train_scores, train_train_dev_subset_train_scores,
train_train_dev_subset_train_scores, train_dev_subset_dev_scores, train_dev_train_dev_subset_dev_scores,
......@@ -303,10 +326,12 @@ if __name__ == "__main__":
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))"""
else:
raise ValueError('This stage number is not supported yet, but it will be!')
logger.info('Done.')
"""
TODO:
For each dataset:
......
......@@ -105,23 +105,23 @@ Command lines example for stage 1:
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --extraction_strategy=none --save_experiment_configuration 1 none_with_params --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --extraction_strategy=random --save_experiment_configuration 1 random_with_params --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 1 omp_with_params --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --extraction_strategy=none --skip_best_hyperparams --save_experiment_configuration 1 none_wo_params --forest_size=1000 --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --extraction_strategy=random --skip_best_hyperparams --save_experiment_configuration 1 random_wo_params --forest_size=1000 --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --skip_best_hyperparams --save_experiment_configuration 1 omp_wo_params --forest_size=1000 --extracted_forest_size_stop=0.05
python code/compute_results.py --stage 1 --experiment_ids 1 2 3 4 5 6 --dataset_name=california_housing --extracted_forest_sizes_number=5
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --extraction_strategy=none --skip_best_hyperparams --save_experiment_configuration 1 none_wo_params --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --extraction_strategy=random --skip_best_hyperparams --save_experiment_configuration 1 random_wo_params --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --skip_best_hyperparams --save_experiment_configuration 1 omp_wo_params --extracted_forest_size_stop=0.05
python code/compute_results.py --stage 1 --experiment_ids 1 2 3 4 5 6 --dataset_name=california_housing
Command lines example for stage 2:
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 2 no_normalization --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 2 normalize_D --normalize_D --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 2 normalize_weights --normalize_weights --extracted_forest_size_stop=0.05
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 2 normalize_D_and_weights --normalize_D --normalize_weights --extracted_forest_size_stop=0.05
python code/compute_results.py --stage 2 --experiment_ids 7 8 9 10 --dataset_name=california_housing --extracted_forest_sizes_number=5
python code/compute_results.py --stage 2 --experiment_ids 7 8 9 10 --dataset_name=california_housing
Command lines example for stage 3:
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 3 train-dev_subset --extracted_forest_size_stop=0.05 --subsets_used train,dev
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 3 train-dev_train-dev_subset --extracted_forest_size_stop=0.05 --subsets_used train+dev,train+dev
python code/train.py --dataset_name=california_housing --seeds 1 2 3 4 5 --save_experiment_configuration 3 train-train-dev_subset --extracted_forest_size_stop=0.05 --subsets_used train,train+dev
python code/compute_results.py --stage 3 --experiment_ids 11 12 13 --dataset_name=california_housing --extracted_forest_sizes_number=5
python code/compute_results.py --stage 3 --experiment_ids 11 12 13 --dataset_name=california_housing
"""
if __name__ == "__main__":
load_dotenv(find_dotenv('.env'))
......
{
"experiment_id": 1,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"none_with_params"
],
"job_number": -1,
"extraction_strategy": "none",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 4,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": true,
"save_experiment_configuration": [
"1",
"none_wo_params"
],
"job_number": -1,
"extraction_strategy": "none",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 3,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"omp_with_params"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 6,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": true,
"save_experiment_configuration": [
"1",
"omp_wo_params"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 2,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"random_with_params"
],
"job_number": -1,
"extraction_strategy": "random",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 5,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": true,
"save_experiment_configuration": [
"1",
"random_wo_params"
],
"job_number": -1,
"extraction_strategy": "random",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 1,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage2",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"2",
"no_normalization"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 2,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": true,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage2",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"2",
"normalize_D"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 4,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": true,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage2",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": true,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"2",
"normalize_D_and_weights"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 3,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage2",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": true,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"2",
"normalize_weights"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 1,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage3",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"3",
"train-dev_subset"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 2,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage3",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train+dev,train+dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"3",
"train-dev_train-dev_subset"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 3,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "20newsgroups_vectorized",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/20newsgroups_vectorized/stage3",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,train+dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"3",
"train-train-dev_subset"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
34
]
}
\ No newline at end of file
{
"experiment_id": 1,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "boston",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/boston/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"none_with_params"
],
"job_number": -1,
"extraction_strategy": "none",
"extracted_forest_size": [
8,
17,
25,
33,
42
]
}
\ No newline at end of file
{
"experiment_id": 4,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "boston",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/boston/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": true,
"save_experiment_configuration": [
"1",
"none_wo_params"
],
"job_number": -1,
"extraction_strategy": "none",
"extracted_forest_size": [
8,
17,
25,
33,
42
]
}
\ No newline at end of file
{
"experiment_id": 3,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "boston",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/boston/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"omp_with_params"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
8,
17,
25,
33,
42
]
}
\ No newline at end of file
{
"experiment_id": 6,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "boston",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/boston/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": true,
"save_experiment_configuration": [
"1",
"omp_wo_params"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
8,
17,
25,
33,
42
]
}
\ No newline at end of file
{
"experiment_id": 2,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "boston",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"models_dir": "models/boston/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"random_with_params"
],
"job_number": -1,
"extraction_strategy": "random",
"extracted_forest_size": [
8,
17,
25,
33,
42
]
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment