Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • main
1 result

Target

Select target project
  • stephane.chavin/psi-biom
1 result
Select Git revision
  • main
1 result
Show changes
Commits on Source (2)
# /!\ TO DO before : globox convert input_YOLO/labels/val/ output_../classifier/test_convert_labels/ --format yolo --save_fmt labelme --img_folder YOLO/images/val/ #path to images import argparse
import os import os
import json import json
import labelme import labelme
import base64 import base64
import pandas as pd import pandas as pd
mode = 'train' #or val parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='TODO')
img_dir = str('../annot/YOLO/images/'+mode+'/') parser.add_argument('-p','--path_to_json', type=str, help = 'Path of the folder that contain the .json',required=True)
parser.add_argument('-i','--path_to_img', type=str, help = 'Path of the folder that contain the .jpg',required=True)
parser.add_argument('-d','--direction', type=str, help = 'Directory to wich modified .json files will be stored',required=True)
args = parser.parse_args()
filename = 'test_convert_labels_train/' #path to .json filename = args.path_to_json
out_file = 'test_convert_labels_train_2/' #direction out_file = args.direction
img_path = '/nfs/NAS7/manip_stephane/annot/YOLO/images/train/' img_path = args.path_to_img
liste_file = os.listdir(filename) liste_file = os.listdir(filename)
liste_file = pd.DataFrame(liste_file, columns =['fn']) liste_file = pd.DataFrame(liste_file, columns =['fn'])
...@@ -24,7 +27,7 @@ liste_file = liste_file.reset_index() ...@@ -24,7 +27,7 @@ liste_file = liste_file.reset_index()
for i, row in liste_file.iterrows(): for i, row in liste_file.iterrows():
if len(row.fn) > 30: if len(row.fn) > 30:
data = labelme.LabelFile.load_image_file(img_dir+row.fn[:-4]+'jpg') data = labelme.LabelFile.load_image_file(str(img_path+row.fn[:-4]+'jpg'))
image_data = base64.b64encode(data).decode('utf-8') image_data = base64.b64encode(data).decode('utf-8')
else: else:
continue continue
......