Skip to content
Snippets Groups Projects
Commit 96605890 authored by Nathan Lhote's avatar Nathan Lhote
Browse files

m

parent d317155d
Branches main
No related tags found
No related merge requests found
......@@ -62,6 +62,7 @@
\newcommand{\pop}{\mathsf{pop}}
\newcommand{\auta}{\mathcal A}
\newcommand{\autb}{\mathcal B}
\newcommand{\astb}{{\star}}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
......@@ -103,7 +104,7 @@
\paragraph{Signature}
A \emph{signature} $\ssign$ is a set $S$ of \emph{symbols}\footnote{We only consider relational signatures.}, together with an \emph{arity function}, which we denote by $\ar:S\rightarrow \nat$. Abusing notations, we will often write $R\in \ssign$ instead of $R\in S$.
\paragraph{Structures} A \emph{structure} (sometimes \emph{model}) $A$ over a signature $\ssign$ is given as a \emph{domain} $\dom_A$ together with an \emph{interpretation function} which maps any symbol $R$ of $\ssign$ to a set denoted $\inter_A(R)$ such that $\inter_A(R)\subseteq \dom(A)^r$, with $r=\ar(R)$.
\paragraph{Structures} A \emph{structure} (sometimes \emph{model}) $A$ over a signature $\ssign$ is given as a \emph{domain} $\dom_A$ together with an \emph{interpretation function} which maps any symbol $R$ of $\ssign$ to a set denoted $\inter_A(R)$ such that $\inter_A(R)\subseteq \dom_A^r$, with $r=\ar(R)$.
\paragraph{Operations}
Any structure over a signature can be seen as a structure over a larger signature where additional symbols are interpreted as empty sets.
......@@ -219,7 +220,7 @@ From the backward translation theorem.
\subsubsection{Exponential growth}
\begin{remark}
An \msomi of dimension $d$ has growth $O((2^n)^d)=O(2^{dn})=2^{O(n)}$.
An \msomi of dimension $d$ has growth $\leq (2^n)^d=2^{dn}=2^{O(n)}$.
\end{remark}
\begin{corollary}
......@@ -358,6 +359,26 @@ For rational turing machines, the following hold:
\end{enumerate}
\end{theorem}
\section{List functions}
Types:
\begin{itemize}
\item $\tau^*$
\item $\tau^{\underline *}$
\item $\tau + \sigma$
\item $\tau \times \sigma$
\item $\tau \rightarrow \sigma$
\end{itemize}
Atomic programs: same as for polyregular list functions, except for \texttt{split}. Moreover each program involving $*$ has an equivalent version using $\astb$. Moreover we introduce a new basic program:
\begin{itemize}
\item $\texttt{subsets}^\tau: \tau^*\rightarrow ((\tau+\tau)^*)^\astb$
\end{itemize}
\section{The case of the successor}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment