diff --git a/main.tex b/main.tex index 946c01b4ba2b434b6849bbb8d8e902c626f48cd9..04ed76fecfb3254a9a087855fd177dce06c081b1 100644 --- a/main.tex +++ b/main.tex @@ -62,6 +62,7 @@ \newcommand{\pop}{\mathsf{pop}} \newcommand{\auta}{\mathcal A} \newcommand{\autb}{\mathcal B} +\newcommand{\astb}{{\star}} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} @@ -103,7 +104,7 @@ \paragraph{Signature} A \emph{signature} $\ssign$ is a set $S$ of \emph{symbols}\footnote{We only consider relational signatures.}, together with an \emph{arity function}, which we denote by $\ar:S\rightarrow \nat$. Abusing notations, we will often write $R\in \ssign$ instead of $R\in S$. -\paragraph{Structures} A \emph{structure} (sometimes \emph{model}) $A$ over a signature $\ssign$ is given as a \emph{domain} $\dom_A$ together with an \emph{interpretation function} which maps any symbol $R$ of $\ssign$ to a set denoted $\inter_A(R)$ such that $\inter_A(R)\subseteq \dom(A)^r$, with $r=\ar(R)$. +\paragraph{Structures} A \emph{structure} (sometimes \emph{model}) $A$ over a signature $\ssign$ is given as a \emph{domain} $\dom_A$ together with an \emph{interpretation function} which maps any symbol $R$ of $\ssign$ to a set denoted $\inter_A(R)$ such that $\inter_A(R)\subseteq \dom_A^r$, with $r=\ar(R)$. \paragraph{Operations} Any structure over a signature can be seen as a structure over a larger signature where additional symbols are interpreted as empty sets. @@ -219,7 +220,7 @@ From the backward translation theorem. \subsubsection{Exponential growth} \begin{remark} -An \msomi of dimension $d$ has growth $O((2^n)^d)=O(2^{dn})=2^{O(n)}$. +An \msomi of dimension $d$ has growth $\leq (2^n)^d=2^{dn}=2^{O(n)}$. \end{remark} \begin{corollary} @@ -358,6 +359,26 @@ For rational turing machines, the following hold: \end{enumerate} \end{theorem} +\section{List functions} + +Types: + +\begin{itemize} +\item $\tau^*$ +\item $\tau^{\underline *}$ +\item $\tau + \sigma$ +\item $\tau \times \sigma$ +\item $\tau \rightarrow \sigma$ +\end{itemize} + +Atomic programs: same as for polyregular list functions, except for \texttt{split}. Moreover each program involving $*$ has an equivalent version using $\astb$. Moreover we introduce a new basic program: + +\begin{itemize} +\item $\texttt{subsets}^\tau: \tau^*\rightarrow ((\tau+\tau)^*)^\astb$ + +\end{itemize} + + \section{The case of the successor}