Skip to content
Snippets Groups Projects
Commit 94285510 authored by Luc Giffon's avatar Luc Giffon
Browse files

exp script end_to_end_with_2_layers_only_dense_with_augment

parent 14155b72
No related branches found
No related tags found
No related merge requests found
......@@ -54,13 +54,13 @@ Kernel related:
"""
import skluc.main.data.mldatasets as dataset
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.regularizers import l2
from tensorflow.python.keras.initializers import he_normal
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from skluc.main.tensorflow_.kernel_approximation.fastfood_layer import FastFoodLayer
from skluc.main.tensorflow_.kernel_approximation.nystrom_layer import DeepstromLayerEndToEnd
......@@ -168,6 +168,13 @@ def main(paraman, resman, printman):
X_test, y_test = data.test.data, data.test.labels
X_val, y_val = data.validation.data, data.validation.labels
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
datagen.fit(X_train)
paraman.init_kernel_dict(X_train)
# # Model definition
......@@ -185,11 +192,8 @@ def main(paraman, resman, printman):
repr_sub = convnet_model(subs)
logger.debug(paraman["kernel_dict"])
input_classifier = None
if paraman["network"] == "deepstrom":
deepstrom_layer = DeepstromLayerEndToEnd(subsample_size=paraman["--nys-size"],
kernel_name=paraman["kernel"],
......@@ -258,8 +262,8 @@ def main(paraman, resman, printman):
j = 0
for i in range(paraman["--num-epoch"]):
logger.debug(memory_usage())
for X_batch, Y_batch in batch_generator(X_train, y_train, paraman["--batch-size"], False):
k = 0
for X_batch, Y_batch in datagen.flow(X_train, y_train, batch_size=paraman["--batch-size"]):
if paraman["network"] == "deepstrom":
feed_dict = {x: X_batch, y: Y_batch, subs: nys_subsample}
else:
......@@ -267,9 +271,8 @@ def main(paraman, resman, printman):
_, loss, acc, summary_str = sess.run([train_optimizer, cross_entropy, accuracy_op, merged_summary], feed_dict=feed_dict)
if j % 100 == 0:
logger.info(
"epoch: {}/{}; batch: {}/{}; batch_shape: {}; loss: {}; acc: {}".format(i, paraman["--num-epoch"], j + 1,
int(data.train[0].shape[
0] / paraman["--batch-size"]) + 1,
"epoch: {}/{}; batch: {}/{}; batch_shape: {}; loss: {}; acc: {}".format(i, paraman["--num-epoch"],
j + 1, int(data.train[0].shape[0] / paraman["--batch-size"]) + 1,
X_batch.shape, loss,
acc))
if paraman["--tensorboard"]:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment