Skip to content
Snippets Groups Projects
Commit 72da0ff8 authored by Luc Giffon's avatar Luc Giffon
Browse files

remove keras evaluation output

parent 8bdf07cf
No related branches found
No related tags found
No related merge requests found
......@@ -62,7 +62,7 @@ from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import skluc.main.data.mldatasets as dataset
from skluc.main.keras_.kernel import map_kernel_name_function
from skluc.main.keras_.kernel import keras_chi_square_CPD, map_kernel_name_function
# from skluc.main.keras_.kernel_approximation.nystrom_layer import DeepstromLayerEndToEnd
from skluc.main.keras_.kernel_approximation.fastfood_layer import FastFoodLayer
from skluc.main.keras_.models import build_lenet_model, build_vgg19_model_glorot
......@@ -81,9 +81,9 @@ def evaluation_function(x_data, y_data, model, list_subsample_bases, datagen_eva
if X_batch.shape[0] != paraman["--batch-size"]:
break
if paraman["network"] == "deepstrom":
loss, acc = model.evaluate([X_batch] + list_subsample_bases, [Y_batch])
loss, acc = model.evaluate([X_batch] + list_subsample_bases, [Y_batch], verbose=0)
else:
loss, acc = model.evaluate([X_batch], [Y_batch])
loss, acc = model.evaluate([X_batch], [Y_batch], verbose=0)
accuracies_val += [acc]
i += 1
......@@ -249,6 +249,7 @@ def main(paraman: ParameterManagerMain, resman, printman):
logger.debug(paraman["kernel_dict"])
list_subsample_bases = []
if paraman["network"] == "deepstrom":
input_subsample = [Input(batch_shape=(paraman["--batch-size"], *input_dim)) for _ in range(paraman["nb_subsample_bases"])]
if paraman["nb_subsample_bases"] > 1:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment