Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
deepFriedConvnet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
deepFriedConvnet
Commits
489ceb8f
Commit
489ceb8f
authored
6 years ago
by
Luc Giffon
Browse files
Options
Downloads
Patches
Plain Diff
remove old benchmark_vgg
parent
516c99fe
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
main/experiments/benchmark_vgg.py.old
+0
-489
0 additions, 489 deletions
main/experiments/benchmark_vgg.py.old
with
0 additions
and
489 deletions
main/experiments/benchmark_vgg.py.old
deleted
100644 → 0
+
0
−
489
View file @
516c99fe
"""
Benchmark VGG: Benchmarking deepstrom versus other architectures of the VGG network.
Usage:
benchmark_vgg dense [-q] [--cifar100|--cifar|--mnist|--svhn] [-t size] [-d val] [-B nb] [-a value] [-v size] [-e numepoch] [-s batchsize] [-D reprdim] [-l]
benchmark_vgg deepfriedconvnet [-q] [--cifar100|--cifar|--mnist|--svhn] [-t size] [-d val] [-B nb] [-a value] [-v size] [-e numepoch] [-s batchsize] [-g gammavalue] [-N nbstack]
benchmark_vgg deepstrom [-q] [--cifar100|--cifar|--mnist|--svhn] [-t size] [-d val] [-B nb] [-r] [-a value] [-v size] [-e numepoch] [-s batchsize] [-D reprdim] [-m size] (-R|-L|-C|-E|-P|-S|-A|-T|-M) [-g gammavalue] [-c cvalue] [-n]
Options:
--help -h Display help and exit.
-q --quiet Set logging level to info.
-a value --seed value The seed value used for all randomization processed [default: 0]
-t --train-size size Size of train set.
-v size --validation-size size The size of the validation set [default: 10000]
-e numepoch --num-epoch=numepoch The number of epoch.
-s batchsize --batch-size=batchsize The number of example in each batch
-d --dropout val Keep probability of neurons before classif [default: 1.0]
-D reprdim --out-dim=reprdim The dimension of the final representation
Dense:
-l --two-layers Says if the dense network should have 1 or 2 layers (default 1).
Deepfried convnet:
-N nbstack --nb-stack nbstack The number of fastfood stack for deepfriedconvnet
Deepstrom:
-r --real-nystrom Says if the matrix for deepstrom should be K^(-1/2)
-n --non-linear Tell Nystrom to use the non linear activation function on its output.
-m size --nys-size size The number of example in the nystrom subsample.
Datasets:
--cifar Use cifar dataset
--mnist Use mnist dataset
--svhn Use svhn dataset
--cifar100 Use cifar100 dataset
Dataset related:
-B --bad-repr nb Use bad convolution with cifar10 dataset: remove nb number of convolution from the head
Possible kernels:
-R --rbf-kernel Says if the rbf kernel should be used for nystrom.
-L --linear-kernel Says if the linear kernel should be used for nystrom.
-C --chi-square-kernel Says if the basic additive chi square kernel should be used for nystrom.
-E --exp-chi-square-kernel Says if the exponential chi square kernel should be used for nystrom.
-P --chi-square-PD-kernel Says if the Positive definite version of the basic additive chi square kernel should be used for nystrom.
-S --sigmoid-kernel Says it the sigmoid kernel should be used for nystrom.
-A --laplacian-kernel Says if the laplacian kernel should be used for nystrom.
-T --stacked-kernel Says if the kernels laplacian, chi2 and rbf in a stacked setting should be used for nystrom.
-M --sumed-kernel Says if the kernels laplacian, chi2 and rbf in a summed setting should be used for nystrom.
Kernel related:
-g gammavalue --gamma gammavalue The value of gamma for rbf, chi or hyperbolic tangent kernel (deepstrom and deepfriedconvnet)
-c cvalue --intercept-constant cvalue The value of the intercept constant for the hyperbolic tangent kernel.
"""
import logging
import sys
import time as t
import daiquiri
import numpy as np
import tensorflow as tf
import docopt
from sklearn.metrics.pairwise import rbf_kernel, linear_kernel, additive_chi2_kernel, chi2_kernel, laplacian_kernel
import skluc.data.mldatasets as dataset
from skluc.data.transformation import VGG19Cifar10Transformer, LecunMnistTransformer, VGG19Cifar10BadTransformer, \
VGG19Cifar10BadTransformerV2, VGG19Cifar10BadTransformerV3, VGG19Cifar10BadTransformerV4, VGG19SvhnTransformer, \
VGG19Cifar100Transformer
from skluc.tensorflow_.kernel_approximation import nystrom_layer, fastfood_layer
from skluc.tensorflow_.utils import fully_connected, batch_generator, classification_cifar
from skluc.tensorflow_.kernel import tf_rbf_kernel, tf_linear_kernel, tf_chi_square_CPD, tf_chi_square_CPD_exp, \
tf_chi_square_PD, tf_sigmoid_kernel, tf_laplacian_kernel, tf_stack_of_kernels, tf_sum_of_kernels
from skluc.utils import logger, compute_euristic_sigma, compute_euristic_sigma_chi2
def print_result():
printed_r_list = [str(NETWORK),
str(global_acc_val),
str(global_acc_test),
str(training_time),
str(NUM_EPOCH),
str(BATCH_SIZE),
str(OUT_DIM),
str(TWO_LAYERS_DENSE),
str(KERNEL_NAME),
str(GAMMA),
str(CONST),
str(NB_STACK),
str(NYS_SUBSAMPLE_SIZE),
str(VALIDATION_SIZE),
str(SEED),
str(NON_LINEAR),
str(REAL_NYSTROM),
str(BAD_REPR),
str(TRAIN_SIZE),
str(DROPOUT),
str(DATASET)
]
print(",".join(printed_r_list))
exit()
def fct_dense(input_, out_dim, two_layers):
with tf.variable_scope("dense_layers"):
fc_1 = fully_connected(input_, out_dim, act=tf.nn.relu, variable_scope="fc1")
if two_layers:
fc_2 = fully_connected(fc_1, out_dim, act=tf.nn.relu, variable_scope="fc2")
else:
fc_2 = fc_1
out = fc_2
return out
def fct_deepstrom(input_, out_dim, subsample, kernel, kernel_params, w_matrix, non_linearity):
"""
Wrap the computing of the deepstrom layer
:param input_:
:param out_dim:
:param subsample:
:param kernel:
:param kernel_params:
:return:
"""
out_fc = nystrom_layer(input_, subsample, W_matrix=w_matrix, output_dim=out_dim, kernel=kernel, output_act=non_linearity, **kernel_params)
return out_fc
def fct_deepfried(input_, nb_stack, sigma):
out_fc = fastfood_layer(input_, sigma, nbr_stack=nb_stack, trainable=True)
return out_fc
def get_gamma_value(arguments, dat, chi2=False):
if arguments["--gamma"] is None:
logger.debug("Gamma arguments is None. Need to compute it.")
if chi2:
gamma_value = 1./compute_euristic_sigma_chi2(dat.train.data)
else:
gamma_value = 1./compute_euristic_sigma(dat.train.data)
else:
gamma_value = eval(arguments["--gamma"])
logger.debug("Gamma value is {}".format(gamma_value))
return gamma_value
if __name__ == '__main__':
# todo special treat for each type of execution
arguments = docopt.docopt(__doc__)
if arguments["--quiet"]:
daiquiri.setup(level=logging.INFO)
NUM_EPOCH = int(arguments["--num-epoch"])
BATCH_SIZE = int(arguments["--batch-size"])
OUT_DIM = int(arguments["--out-dim"]) if arguments["--out-dim"] is not None else None
TWO_LAYERS_DENSE = arguments["--two-layers"]
RBF_KERNEL = arguments["--rbf-kernel"]
LINEAR_KERNEL = arguments["--linear-kernel"]
CHI2_KERNEL = arguments["--chi-square-kernel"]
CHI2_EXP_KERNEL = arguments["--exp-chi-square-kernel"]
CHI2_PD_KERNEL = arguments["--chi-square-PD-kernel"]
SIGMOID_KERNEL = arguments["--sigmoid-kernel"]
LAPLACIAN_KERNEL = arguments["--laplacian-kernel"]
STACKED_KERNEL = arguments["--stacked-kernel"]
SUMED_KERNEL = arguments["--sumed-kernel"]
VALIDATION_SIZE = int(arguments["--validation-size"])
REAL_NYSTROM = arguments["--real-nystrom"]
SEED = int(arguments["--seed"]) # The seed change the data ordering in the dataset (so train/validation/test split may change with != seeds)
NYS_SUBSAMPLE_SIZE = None
KERNEL_NAME = None
GAMMA = None
CONST = None
NB_STACK = None
NON_LINEAR = tf.nn.relu if arguments["--non-linear"] else None
kernel_dict = {}
CIFAR_DATASET = bool(arguments["--cifar"])
CIFAR100_DATASET = bool(arguments["--cifar100"])
MNIST_DATASET = bool(arguments["--mnist"])
SVHN_DATASET = bool(arguments["--svhn"])
if CIFAR_DATASET:
DATASET = "cifar"
elif MNIST_DATASET:
DATASET = "mnist"
elif SVHN_DATASET:
DATASET = "svhn"
elif CIFAR100_DATASET:
DATASET = "cifar100"
else:
raise ValueError("no know dataset specified")
BAD_REPR = arguments["--bad-repr"]
logger.debug("{}".format(arguments["--dropout"]))
DROPOUT = float(arguments["--dropout"]) if arguments["--dropout"] is not None else None
logger.debug("DROPOUT value is {} and type {}".format(DROPOUT, type(DROPOUT)))
if arguments["--train-size"] is not None:
TRAIN_SIZE = int(arguments["--train-size"])
else:
TRAIN_SIZE = arguments["--train-size"]
global_acc_val = None
global_acc_test = None
training_time = None
SEED_TRAIN_VALIDATION = SEED
if CIFAR_DATASET:
data = dataset.Cifar10Dataset(validation_size=VALIDATION_SIZE, seed=SEED_TRAIN_VALIDATION)
if BAD_REPR is None or int(BAD_REPR) == 0:
# todo faire quelquechose pour ces "bad repr"
# parametre de bad representation et une seule classe?
transformer = VGG19Cifar10Transformer
elif int(BAD_REPR) == 1:
transformer = VGG19Cifar10BadTransformer
elif int(BAD_REPR) == 2:
transformer = VGG19Cifar10BadTransformerV2
elif int(BAD_REPR) == 3:
transformer = VGG19Cifar10BadTransformerV3
elif int(BAD_REPR) == 4:
transformer = VGG19Cifar10BadTransformerV4
else:
raise ValueError("Not known transformer value: {}".format(BAD_REPR))
elif MNIST_DATASET:
data = dataset.MnistDataset(validation_size=VALIDATION_SIZE, seed=SEED_TRAIN_VALIDATION)
transformer = LecunMnistTransformer
elif SVHN_DATASET:
data = dataset.SVHNDataset(validation_size=VALIDATION_SIZE, seed=SEED_TRAIN_VALIDATION)
transformer = VGG19SvhnTransformer
elif CIFAR100_DATASET:
data = dataset.Cifar100FineDataset(validation_size=VALIDATION_SIZE, seed=SEED_TRAIN_VALIDATION)
transformer = VGG19Cifar100Transformer
else:
raise ValueError("No dataset specified")
data.load()
data.to_image() # todo gérer le cas où ce sont déjà des images (les flatteniser dans tous les cas?)
data.data_astype(np.float32)
data.labels_astype(np.float32)
data.normalize()
logger.debug("train dataset shape: {}".format(data.train.data.shape))
data.apply_transformer(transformer)
data.normalize()
data.to_one_hot()
data.flatten()
if TRAIN_SIZE is not None:
data.reduce_data_size(int(TRAIN_SIZE))
logger.info("Start benchmark with parameters: {}".format(" ".join(sys.argv[1:])))
logger.info("Using dataset {} with validation size {} and seed for spliting set {}.".format(data.s_name, data.validation_size, data.seed))
logger.info("Shape of train set data: {}; shape of train set labels: {}".format(data.train[0].shape, data.train[1].shape))
logger.info("Shape of validation set data: {}; shape of validation set labels: {}".format(data.validation[0].shape, data.validation[1].shape))
logger.info("Shape of test set data: {}; shape of test set labels: {}".format(data.test[0].shape, data.test[1].shape))
logger.debug("Sample of label: {}".format(data.train[1][0]))
# todo separated function for parameters parsing
if arguments["dense"]:
NETWORK = "dense"
elif arguments["deepstrom"]:
NETWORK = "deepstrom"
NYS_SUBSAMPLE_SIZE = int(arguments["--nys-size"])
if OUT_DIM is None:
OUT_DIM = NYS_SUBSAMPLE_SIZE
if RBF_KERNEL:
KERNEL = tf_rbf_kernel
KERNEL_NAME = "rbf"
GAMMA = get_gamma_value(arguments, data)
kernel_dict = {"gamma": GAMMA}
elif LINEAR_KERNEL:
KERNEL = tf_linear_kernel
KERNEL_NAME = "linear"
elif CHI2_KERNEL:
KERNEL = tf_chi_square_CPD
KERNEL_NAME = "chi2_cpd"
elif CHI2_EXP_KERNEL:
KERNEL = tf_chi_square_CPD_exp
KERNEL_NAME = "chi2_exp_cpd"
GAMMA = get_gamma_value(arguments, data, chi2=True)
kernel_dict = {"gamma": GAMMA}
elif CHI2_PD_KERNEL:
KERNEL = tf_chi_square_PD
KERNEL_NAME = "chi2_pd"
elif SIGMOID_KERNEL:
KERNEL = tf_sigmoid_kernel
KERNEL_NAME = "sigmoid"
GAMMA = get_gamma_value(arguments, data)
CONST = float(arguments["--intercept-constant"])
kernel_dict = {"gamma": GAMMA, "constant": CONST}
elif LAPLACIAN_KERNEL:
KERNEL = tf_laplacian_kernel
KERNEL_NAME = "laplacian"
GAMMA = get_gamma_value(arguments, data)
kernel_dict = {"gamma": np.sqrt(GAMMA)}
elif STACKED_KERNEL:
GAMMA = get_gamma_value(arguments, data)
def KERNEL(X, Y):
return tf_stack_of_kernels(X, Y, [tf_rbf_kernel for _ in GAMMA],
[{"gamma": g_value} for g_value in GAMMA])
KERNEL_NAME = "stacked"
elif SUMED_KERNEL:
GAMMA = get_gamma_value(arguments, data)
def KERNEL(X, Y):
return tf_sum_of_kernels(X, Y, [tf_rbf_kernel for _ in GAMMA],
[{"gamma": g_value} for g_value in GAMMA])
KERNEL_NAME = "summed"
else:
raise Exception("No kernel function specified for deepstrom")
elif arguments["deepfriedconvnet"]:
NETWORK = "deepfriedconvnet"
NB_STACK = int(arguments["--nb-stack"])
GAMMA = get_gamma_value(arguments, data)
SIGMA = 1 / GAMMA
else:
raise Exception("Not recognized network")
input_dim, output_dim = data.train[0].shape[1], data.train[1].shape[1]
x = tf.placeholder(tf.float32, shape=[None, input_dim], name="x")
y = tf.placeholder(tf.float32, shape=[None, output_dim], name="label")
if NETWORK == "dense":
logger.info("Selecting dense layer function with output dim = {} and {} layers".format(OUT_DIM, 2 if TWO_LAYERS_DENSE else 1))
input_classif = fct_dense(x, OUT_DIM, TWO_LAYERS_DENSE)
elif NETWORK == "deepstrom":
logger.info("Selecting {} deepstrom layer function with "
"subsample size = {}, "
"output_dim = {}, "
"{} activation function "
"and kernel = {}"
.format("real" if REAL_NYSTROM else "learned",
NYS_SUBSAMPLE_SIZE,
OUT_DIM,
"with" if NON_LINEAR else "without",
KERNEL_NAME))
# if TRAIN_SIZE < int(NYS_SUBSAMPLE_SIZE) + 10:
# logger.debug("Train size is {} and nys size is {}. not ok".format(TRAIN_SIZE, NYS_SUBSAMPLE_SIZE))
# print_result()
if OUT_DIM is not None and OUT_DIM > NYS_SUBSAMPLE_SIZE:
logger.debug("Output dim is greater than deepstrom subsample size. Aborting.")
print_result()
if TRAIN_SIZE is not None:
subsample_indexes = data.get_uniform_class_rand_indices_validation(NYS_SUBSAMPLE_SIZE)
nys_subsample = data.validation.data[subsample_indexes]
else:
subsample_indexes = data.get_uniform_class_rand_indices_train(NYS_SUBSAMPLE_SIZE)
nys_subsample = data.train.data[subsample_indexes]
logger.debug("Chosen subsample: {}".format(nys_subsample))
if REAL_NYSTROM:
logger.debug("Real nystrom asked: eg projection matrix has the vanilla formula")
if SUMED_KERNEL:
# here K11 matrix are added before doing nystrom approximation
added_K11 = np.zeros((nys_subsample.shape[0], nys_subsample.shape[0]))
for g_value in GAMMA:
added_K11 = np.add(added_K11, rbf_kernel(nys_subsample, nys_subsample, gamma=g_value))
U, S, V = np.linalg.svd(added_K11)
invert_root_K11 = np.dot(U / np.sqrt(S), V).astype(np.float32)
input_classif = fct_deepstrom(x, OUT_DIM, nys_subsample, KERNEL, kernel_dict,
w_matrix=invert_root_K11, non_linearity=NON_LINEAR)
elif STACKED_KERNEL:
# here nystrom approximations are stacked
lst_invert_root_K11 = []
for g_value in GAMMA:
K11 = rbf_kernel(nys_subsample, nys_subsample, gamma=g_value)
U, S, V = np.linalg.svd(K11)
invert_root_K11 = np.dot(U / np.sqrt(S), V).astype(np.float32)
lst_invert_root_K11.append(invert_root_K11)
stack_K11 = np.vstack(lst_invert_root_K11)
input_classif = fct_deepstrom(x, OUT_DIM, nys_subsample, KERNEL, kernel_dict,
w_matrix=stack_K11, non_linearity=NON_LINEAR)
else:
if KERNEL_NAME == "rbf":
kernel_fct = rbf_kernel
elif KERNEL_NAME == "linear":
kernel_fct = linear_kernel
elif KERNEL_NAME == "chi2_cpd":
kernel_fct = additive_chi2_kernel
elif KERNEL_NAME == "chi2_exp_cpd":
kernel_fct = chi2_kernel
elif KERNEL_NAME == "chi2_pd":
raise NotImplementedError("Bien verifier que ce code ne fait pas bordel")
elif KERNEL_NAME == "laplacian":
kernel_fct = laplacian_kernel
else:
raise ValueError("Unknown kernel name: {}".format(KERNEL_NAME))
K11 = kernel_fct(nys_subsample, nys_subsample, **kernel_dict)
U, S, V = np.linalg.svd(K11)
invert_root_K11 = np.dot(U / np.sqrt(S), V).astype(np.float32)
input_classif = fct_deepstrom(x, OUT_DIM, nys_subsample, KERNEL, kernel_dict, w_matrix=invert_root_K11, non_linearity=NON_LINEAR)
else:
input_classif = fct_deepstrom(x, OUT_DIM, nys_subsample, KERNEL, kernel_dict,
w_matrix=None, non_linearity=NON_LINEAR)
elif NETWORK == "deepfriedconvnet":
logger.debug("Selecting deepfriedconvnet layer function")
input_classif = fct_deepfried(x, NB_STACK, SIGMA)
else:
raise Exception("Not recognized network")
classif, keep_prob = classification_cifar(input_classif, output_dim)
# calcul de la loss
with tf.name_scope("xent"):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=classif, name="xentropy"),
name="xentropy_mean")
tf.summary.scalar('loss-xent', cross_entropy)
# todo learning rate as hyperparameter
# calcul du gradient
with tf.name_scope("train"):
global_step = tf.Variable(0, name="global_step", trainable=False)
train_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy,
global_step=global_step)
# calcul de l'accuracy
with tf.name_scope("accuracy"):
predictions = tf.argmax(classif, 1)
correct_prediction = tf.equal(predictions, tf.argmax(y, 1))
accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy_op)
merged_summary = tf.summary.merge_all()
init = tf.global_variables_initializer()
# Create a session for running Ops on the Graph.
# Instantiate a SummaryWriter to output summaries and the Graph.
# summary_writer = tf.summary.FileWriter("debug_benchmark_vgg")
# Initialize all Variable objects
# actual learning
with tf.Session() as sess:
logger.info("Start training")
# summary_writer.add_graph(sess.graph)
# Initialize all Variable objects
sess.run(init)
# actual learning
# feed_dict_val = {x: data.validation[0], y: data.validation[1], keep_prob: 1.0}
global_start = t.time()
for i in range(NUM_EPOCH):
j = 0
start = t.time()
for X_batch, Y_batch in batch_generator(data.train[0], data.train[1], BATCH_SIZE, False):
feed_dict = {x: X_batch, y: Y_batch, keep_prob: DROPOUT}
_, loss, acc = sess.run([train_optimizer, cross_entropy, accuracy_op], feed_dict=feed_dict)
if j % 100 == 0:
logger.info("epoch: {}/{}; batch: {}/{}; batch_shape: {}; loss: {}; acc: {}".format(i, NUM_EPOCH, j+1, int(data.train[0].shape[0]/BATCH_SIZE)+1, X_batch.shape, loss, acc))
# summary_str = sess.run(merged_summary, feed_dict=feed_dict)
# summary_writer.add_summary(summary_str, j)
j += 1
logger.info("Evaluation on validation data")
training_time = t.time() - global_start
accuracies_val = []
i = 0
for X_batch, Y_batch in batch_generator(data.validation.data, data.validation.labels, 1000, False):
accuracy = sess.run([accuracy_op], feed_dict={
x: X_batch, y: Y_batch, keep_prob: 1.0})
accuracies_val.append(accuracy[0])
i += 1
global_acc_val = sum(accuracies_val) / i
logger.info("Evaluation on test data")
accuracies_test = []
i = 0
for X_batch, Y_batch in batch_generator(data.test.data, data.test.labels, 1000, False):
accuracy = sess.run([accuracy_op], feed_dict={
x: X_batch, y: Y_batch, keep_prob: 1.0})
accuracies_test.append(accuracy[0])
i += 1
global_acc_test = sum(accuracies_test) / i
print_result()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment