Newer
Older
"""
nystrom_vs_deepstrom: Compute accuracy efficiency of the nystrom method vs deepstrom.
Usage:
nystrom_vs_deepstrom (--nystroem | --deepstrom) [-e numepoch -s batchsize -G gammavalue -m subsamplesize]
nystrom_vs_deepstrom -h | --help
Options:
-h --help Show this screen.
--nystroem Run the nystroem version.
--deepstrom Run the deepstrom version.
-G gammavalue --gamma-nystrom=gammavalue The gamma value used in nystrom.
-m subsamplesize --subsample-size-nystrom=subsamplesize The subsample size for nystrom.
-e numepoch --num-epoch=numepoch The number of epoch. [default: 1]
-s batchsize --batch-size=batchsize The number of example in each batch [default: 50]
"""
import tensorflow as tf
import numpy as np
import skluc.mldatasets as dataset
from sklearn.kernel_approximation import Nystroem
from sklearn.svm import SVC
from skluc.kernel_approximation.nystrom.nystrom_approx import nystrom_layer
from skluc.neural_networks import batch_generator, classification_mnist
tf.logging.set_verbosity(tf.logging.ERROR)
import docopt
def deepstrom_classif(X_train,
Y_train,
X_nystrom,
batch_size,
num_epoch,
dataset_cycling,
gamma,
data_shape,
output_dim,
output_nystrom_layer,
X_test=None,
Y_test=None):
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
with tf.Graph().as_default():
x = tf.placeholder(tf.float32, shape=[None, *data_shape], name="x")
y_ = tf.placeholder(tf.float32, shape=[None, output_dim], name="labels")
x_nystrom = tf.Variable(X_nystrom, name="nystrom_subsample", trainable=False)
out_fc = nystrom_layer(x, x_nystrom, gamma, output_dim=output_nystrom_layer)
y_conv, keep_prob = classification_mnist(out_fc, output_dim=output_dim)
# # calcul de la loss
with tf.name_scope("xent"):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv, name="xentropy"),
name="xentropy_mean")
# # calcul du gradient
with tf.name_scope("train"):
global_step = tf.Variable(0, name="global_step", trainable=False)
train_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy,
global_step=global_step)
# # calcul de l'accuracy
with tf.name_scope("accuracy"):
predictions = tf.argmax(y_conv, 1)
correct_prediction = tf.equal(predictions, tf.argmax(y_, 1))
accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
# Create a session for running Ops on the Graph.
with tf.Session() as sess:
# Initialize all Variable objects
sess.run(init)
# actual learning
for i in range(num_epoch):
for X_batch, Y_batch in batch_generator(X_train, Y_train, batch_size, dataset_cycling):
feed_dict = {x: X_batch, y_: Y_batch, keep_prob: 0.5}
sess.run([train_optimizer, cross_entropy], feed_dict=feed_dict)
accuracy = None
if X_test is not None and Y_test is not None:
# testing or predicting may not be wanted
accuracy = sess.run([accuracy_op], feed_dict={
x: X_test, y_: Y_test, keep_prob: 1.0})
lst_output = [str(accuracy[0]), str(x_nystrom.shape[0]), str(gamma), str(batch_size), str(num_epoch)]
print(",".join(lst_output))
def nystroem_classif(X_train, Y_train, X_test, Y_test, subsample, gamma):
nys = Nystroem(kernel="rbf", gamma=gamma, n_components=len(subsample))
nys.fit(subsample)
X_train_transformed = nys.transform(X_train)
X_test_transformed = nys.transform(X_test)
clf = SVC(kernel="linear")
clf.fit(X_train_transformed, Y_train)
score = clf.score(X_test_transformed, Y_test)
lst_output = [str(score), str(len(subsample)), str(gamma)]
print(",".join(lst_output))
if __name__ == "__main__":
arguments = docopt.docopt(__doc__)
SUBSAMPLE_SIZE = int(arguments["--subsample-size-nystrom"])
gamma = float(arguments["--gamma-nystrom"])
nystroem = arguments["--nystroem"]
deepstrom = arguments["--deepstrom"]
num_epoch = int(float(arguments["--num-epoch"]))
batch_size = int(arguments["--batch-size"])
mnist = dataset.MnistDataset()
mnist.load()
mnist.normalize()
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
indexes_nystrom = np.random.permutation(60000)[:SUBSAMPLE_SIZE]
if nystroem:
X_train, Y_train = mnist.train
X_test, Y_test = mnist.test
X_subsample = X_train[indexes_nystrom]
nystroem_classif(X_train=X_train,
Y_train=Y_train,
X_test=X_test,
Y_test=Y_test,
subsample=X_subsample,
gamma=gamma)
elif deepstrom:
mnist.to_one_hot()
mnist.data_astype(np.float32)
mnist.labels_astype(np.float32)
X_train, Y_train = mnist.train
X_test, Y_test = mnist.test
X_subsample = X_train[indexes_nystrom]
deepstrom_classif(X_train=X_train,
Y_train=Y_train,
X_test=X_test,
Y_test=Y_test,
gamma=gamma,
data_shape=X_train.shape[1:],
output_dim=Y_train.shape[1],
dataset_cycling=False,
num_epoch=num_epoch,
output_nystrom_layer=SUBSAMPLE_SIZE,
X_nystrom=X_subsample,
batch_size=batch_size)