Skip to content
Snippets Groups Projects

Resolve "integration-sota"

Merged Charly Lamothe requested to merge 15-integration-sota into master

Files

+ 7
4
@@ -2,6 +2,7 @@ from bolsonaro.models.model_raw_results import ModelRawResults
from bolsonaro.models.omp_forest_regressor import OmpForestRegressor
from bolsonaro.models.omp_forest_classifier import OmpForestBinaryClassifier, OmpForestMulticlassClassifier
from bolsonaro.models.similarity_forest_regressor import SimilarityForestRegressor
from bolsonaro.models.kmeans_forest_regressor import KMeansForestRegressor
from bolsonaro.error_handling.logger_factory import LoggerFactory
from bolsonaro.data.task import Task
from . import LOG_PATH
@@ -96,7 +97,7 @@ class Trainer(object):
self._end_time = time.time()
def __score_func(self, model, X, y_true, weights=True):
if type(model) in [OmpForestRegressor, RandomForestRegressor, SimilarityForestRegressor]:
if type(model) in [OmpForestRegressor, RandomForestRegressor]:
if weights:
y_pred = model.predict(X)
else:
@@ -109,12 +110,14 @@ class Trainer(object):
y_pred = model.predict_no_weights(X)
if type(model) is OmpForestBinaryClassifier:
y_pred = np.sign(y_pred)
y_pred = np.where(y_pred==0, 1, y_pred)
y_pred = np.where(y_pred == 0, 1, y_pred)
result = self._classification_score_metric(y_true, y_pred)
elif type(model) in [SimilarityForestRegressor, KMeansForestRegressor]:
result = model.score(X, y_true)
return result
def __score_func_base(self, model, X, y_true):
if type(model) == OmpForestRegressor:
if type(model) in [OmpForestRegressor, SimilarityForestRegressor, KMeansForestRegressor]:
y_pred = model.predict_base_estimator(X)
result = self._base_regression_score_metric(y_true, y_pred)
elif type(model) in [OmpForestBinaryClassifier, OmpForestMulticlassClassifier]:
@@ -123,7 +126,7 @@ class Trainer(object):
elif type(model) == RandomForestClassifier:
y_pred = model.predict(X)
result = self._base_classification_score_metric(y_true, y_pred)
elif type(model) in [RandomForestRegressor, SimilarityForestRegressor]:
elif type(model) is RandomForestRegressor:
y_pred = model.predict(X)
result = self._base_regression_score_metric(y_true, y_pred)
return result
Loading