Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!20
Resolve "integration-sota"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Expand sidebar
Merged
Resolve "integration-sota"
15-integration-sota
into
master
Overview
0
Commits
25
Pipelines
0
Changes
1
Merged
Resolve "integration-sota"
Charly Lamothe
requested to merge
15-integration-sota
into
master
Mar 6, 2020
Overview
0
Commits
25
Pipelines
0
Changes
1
0
0
Merge request reports
Compare
master
version 15
baf8cb3c
Mar 10, 2020
version 14
7562c0c1
Mar 10, 2020
version 13
96ff6093
Mar 10, 2020
version 12
34070d2c
Mar 6, 2020
version 11
6483c0dc
Mar 6, 2020
version 10
138660cb
Mar 6, 2020
version 9
731cee0a
Mar 6, 2020
version 8
86c4cf10
Mar 6, 2020
version 7
bf240b77
Mar 6, 2020
version 6
1194ee2f
Mar 6, 2020
version 5
0363926f
Mar 6, 2020
version 4
46a4a8b0
Mar 6, 2020
version 3
ca5d0080
Mar 6, 2020
version 2
94668904
Mar 6, 2020
version 1
125817c1
Mar 6, 2020
master (base)
and
version 1
latest version
462e76fa
25 commits,
Mar 10, 2020
version 15
baf8cb3c
16 commits,
Mar 10, 2020
version 14
7562c0c1
15 commits,
Mar 10, 2020
version 13
96ff6093
14 commits,
Mar 10, 2020
version 12
34070d2c
13 commits,
Mar 6, 2020
version 11
6483c0dc
12 commits,
Mar 6, 2020
version 10
138660cb
11 commits,
Mar 6, 2020
version 9
731cee0a
10 commits,
Mar 6, 2020
version 8
86c4cf10
8 commits,
Mar 6, 2020
version 7
bf240b77
7 commits,
Mar 6, 2020
version 6
1194ee2f
6 commits,
Mar 6, 2020
version 5
0363926f
5 commits,
Mar 6, 2020
version 4
46a4a8b0
4 commits,
Mar 6, 2020
version 3
ca5d0080
3 commits,
Mar 6, 2020
version 2
94668904
2 commits,
Mar 6, 2020
version 1
125817c1
1 commit,
Mar 6, 2020
1 file
+
6
−
4
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
code/bolsonaro/trainer.py
+
6
−
4
View file @ 125817c1
Edit in single-file editor
Open in Web IDE
Show full file
@@ -96,7 +96,7 @@ class Trainer(object):
self
.
_end_time
=
time
.
time
()
def
__score_func
(
self
,
model
,
X
,
y_true
,
weights
=
True
):
if
type
(
model
)
in
[
OmpForestRegressor
,
RandomForestRegressor
,
SimilarityForestRegressor
]:
if
type
(
model
)
in
[
OmpForestRegressor
,
RandomForestRegressor
]:
if
weights
:
y_pred
=
model
.
predict
(
X
)
else
:
@@ -109,12 +109,14 @@ class Trainer(object):
y_pred
=
model
.
predict_no_weights
(
X
)
if
type
(
model
)
is
OmpForestBinaryClassifier
:
y_pred
=
np
.
sign
(
y_pred
)
y_pred
=
np
.
where
(
y_pred
==
0
,
1
,
y_pred
)
y_pred
=
np
.
where
(
y_pred
==
0
,
1
,
y_pred
)
result
=
self
.
_classification_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
SimilarityForestRegressor
,
KMeansForestRegressor
]:
result
=
model
.
score
(
X
,
y_true
)
return
result
def
__score_func_base
(
self
,
model
,
X
,
y_true
):
if
type
(
model
)
==
OmpForestRegressor
:
if
type
(
model
)
in
[
OmpForestRegressor
,
SimilarityForestRegressor
,
KMeansForestRegressor
]
:
y_pred
=
model
.
predict_base_estimator
(
X
)
result
=
self
.
_base_regression_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
in
[
OmpForestBinaryClassifier
,
OmpForestMulticlassClassifier
]:
@@ -123,7 +125,7 @@ class Trainer(object):
elif
type
(
model
)
==
RandomForestClassifier
:
y_pred
=
model
.
predict
(
X
)
result
=
self
.
_base_classification_score_metric
(
y_true
,
y_pred
)
elif
type
(
model
)
i
n
[
RandomForestRegressor
,
SimilarityForestRegressor
]
:
elif
type
(
model
)
i
s
RandomForestRegressor
:
y_pred
=
model
.
predict
(
X
)
result
=
self
.
_base_regression_score_metric
(
y_true
,
y_pred
)
return
result
Loading