Skip to content
Snippets Groups Projects
Commit 69dd8959 authored by farah.cherfaoui's avatar farah.cherfaoui
Browse files

notation foret et arbre

parent de15bfa2
No related branches found
No related tags found
No related merge requests found
...@@ -5,6 +5,13 @@ ...@@ -5,6 +5,13 @@
\usepackage{algpseudocode} \usepackage{algpseudocode}
\usepackage{algorithm} \usepackage{algorithm}
\usepackage{float} \usepackage{float}
\usepackage{dsfont}
\usepackage{amsmath}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\algnewcommand\algorithmicforeach{\textbf{for each}} \algnewcommand\algorithmicforeach{\textbf{for each}}
\algdef{S}[FOR]{ForEach}[1]{\algorithmicforeach\ #1\ \algorithmicdo} \algdef{S}[FOR]{ForEach}[1]{\algorithmicforeach\ #1\ \algorithmicdo}
...@@ -23,7 +30,28 @@ ...@@ -23,7 +30,28 @@
\section{Introduction} \section{Introduction}
\subsection{Notation} \subsection{Notation}
$S = \{(x_i, y_i)\}^n_{i=1}$ the dataset, with $x_i \in X$ and $y_i \in Y$. $T = \{t_1, t_2, \dots, t_d\}$ the random forest of $d$ trees, such that $t_j : X \rightarrow Y$. Let $ X \in \mathbb{R}^{n \times d}$ be the matrix data and $Y \in \mathbb{R}^{n}$ be the labels vector associated to the matrix $X$, where for each $i$, $\textbf{x}_i \in \cal{X} \subseteq \mathbb{R}^d$ and $y_i \in {\cal Y} \subseteq \mathbb{R}$. \\
A random forest $F_{t_1, \dots, t_l}$ is a classifier made of a collection of $l$ trees ${t_1, \dots, t_l}$. This forest can be seen as a function, and noted as:
%
$$\begin{array}{ccccc}
F_{t_1, \dots, t_l} & : & \cal{X} & \to & \cal{Y} \\
& & \textbf{x} & \mapsto & F_{t_1, \dots, t_l}(\textbf{x}) = f(\{t_1, \dots, t_l\} , \textbf{x}) \\
\end{array}$$
%
where $f$ is a function which depend on the task. In a regression setup, where ${\cal Y} = \mathbb{R}$, this function can be defined as:
%
$$f(\{t_1, \dots, t_l \} , \textbf{x}) = \sum_{i = 1}^{l} \alpha_i t_i(x) \ \text{ where } \alpha_i \in \mathbb{R},$$
%
while in a classification setup, in which ${\cal Y} = \{ c_1, \dots, c_m \}$, $f$ will be a majority vote function:
%
$$f(\{t_1, \dots, t_l \} , \textbf{x}) = \argmax_{c \in {\cal Y}} \sum_{i = 1}^{l} \mathds{1}(t_i(\textbf{x}) = c).$$
%
We will need to define the vector prediction of a forest for all the data matrix: $F_{t_1, \dots, t_l}(X) = \begin{pmatrix}
F_{t_1, \dots, t_l}(x_1) \\
\dots \\
F_{t_1, \dots, t_l}(x_n)
\end{pmatrix}.$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Orthogonal Matching Pursuit (OMP)} \subsection{Orthogonal Matching Pursuit (OMP)}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment