$S =\{(x_i, y_i)\}^n_{i=1}$ the dataset, with $x_i \in X$ and $y_i \in Y$. $T =\{t_1, t_2, \dots, t_d\}$ the random forest of $d$ trees, such that $t_j : X \rightarrow Y$.
Let $ X \in\mathbb{R}^{n \times d}$ be the matrix data and $Y \in\mathbb{R}^{n}$ be the labels vector associated to the matrix $X$, where for each $i$, $\textbf{x}_i \in\cal{X}\subseteq\mathbb{R}^d$ and $y_i \in{\cal Y}\subseteq\mathbb{R}$. \\
A random forest $F_{t_1, \dots, t_l}$ is a classifier made of a collection of $l$ trees ${t_1, \dots, t_l}$. This forest can be seen as a function, and noted as: