Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Commits
04125aff
Commit
04125aff
authored
5 years ago
by
Charly Lamothe
Browse files
Options
Downloads
Patches
Plain Diff
Few fixes in compute_results
parent
0ea777e7
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
code/compute_results.py
+43
-17
43 additions, 17 deletions
code/compute_results.py
with
43 additions
and
17 deletions
code/compute_results.py
+
43
−
17
View file @
04125aff
...
...
@@ -211,7 +211,7 @@ def extract_correlations_across_seeds(models_dir, results_dir, experiment_id):
extracted_forest_size_path
=
extracted_forest_sizes_root_path
+
os
.
sep
+
extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results
=
ModelRawResults
.
load
(
extracted_forest_size_path
)
experiment_correlations
[
seed
].
append
(
model_raw_results
.
correlation
)
experiment_correlations
[
seed
].
append
(
model_raw_results
.
train_
correlation
)
return
experiment_correlations
...
...
@@ -239,10 +239,38 @@ def extract_coherences_across_seeds(models_dir, results_dir, experiment_id):
extracted_forest_size_path
=
extracted_forest_sizes_root_path
+
os
.
sep
+
extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results
=
ModelRawResults
.
load
(
extracted_forest_size_path
)
experiment_coherences
[
seed
].
append
(
model_raw_results
.
coherence
)
experiment_coherences
[
seed
].
append
(
model_raw_results
.
train_
coherence
)
return
experiment_coherences
def
extract_strengths_across_seeds
(
models_dir
,
results_dir
,
experiment_id
):
experiment_id_path
=
models_dir
+
os
.
sep
+
str
(
experiment_id
)
# models/{experiment_id}
experiment_seed_root_path
=
experiment_id_path
+
os
.
sep
+
'
seeds
'
# models/{experiment_id}/seeds
experiment_strengths
=
dict
()
# For each seed results stored in models/{experiment_id}/seeds
seeds
=
os
.
listdir
(
experiment_seed_root_path
)
seeds
.
sort
(
key
=
int
)
for
seed
in
seeds
:
experiment_seed_path
=
experiment_seed_root_path
+
os
.
sep
+
seed
# models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path
=
experiment_seed_path
+
os
.
sep
+
'
extracted_forest_sizes
'
# models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_strengths
[
seed
]
=
list
()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes
=
os
.
listdir
(
extracted_forest_sizes_root_path
)
extracted_forest_sizes
=
[
nb_tree
for
nb_tree
in
extracted_forest_sizes
if
not
'
no_weights
'
in
nb_tree
]
extracted_forest_sizes
.
sort
(
key
=
int
)
for
extracted_forest_size
in
extracted_forest_sizes
:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path
=
extracted_forest_sizes_root_path
+
os
.
sep
+
extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results
=
ModelRawResults
.
load
(
extracted_forest_size_path
)
experiment_strengths
[
seed
].
append
(
model_raw_results
.
test_strength
)
return
experiment_strengths
def
extract_selected_trees_scores_across_seeds
(
models_dir
,
results_dir
,
experiment_id
,
weighted
=
False
):
experiment_id_path
=
models_dir
+
os
.
sep
+
str
(
experiment_id
)
# models/{experiment_id}
experiment_seed_root_path
=
experiment_id_path
+
os
.
sep
+
'
seeds
'
# models/{experiment_id}/seeds
...
...
@@ -784,14 +812,14 @@ if __name__ == "__main__":
experiment_weights
=
extract_weights_across_seeds
(
args
.
models_dir
,
args
.
results_dir
,
experiment_id
)
Plotter
.
weight_density
(
experiment_weights
,
os
.
path
.
join
(
root_output_path
,
f
'
weight_density_
{
experiment_label
}
.png
'
))
if
args
.
plot_preds_coherence
:
root_output_path
=
os
.
path
.
join
(
args
.
results_dir
,
args
.
dataset_name
,
f
'
stage5_
new
'
)
root_output_path
=
os
.
path
.
join
(
args
.
results_dir
,
args
.
dataset_name
,
f
'
stage5_
27-03-20
'
)
pathlib
.
Path
(
root_output_path
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
all_labels
=
[
'
random
'
,
'
omp
'
,
'
kmeans
'
,
'
similarity_similarities
'
,
'
similarity_predictions
'
,
'
ensemble
'
]
_
,
_
,
_
,
with_params_extracted_forest_sizes
,
_
=
\
extract_scores_across_seeds_and_extracted_forest_sizes
(
args
.
models_dir
,
args
.
results_dir
,
2
)
coherence_values
=
[
extract_coherences_across_seeds
(
args
.
models_dir
,
args
.
results_dir
,
i
)
for
i
in
args
.
experiment_ids
]
Plotter
.
plot_stage2_losses
(
file_path
=
root_output_path
+
os
.
sep
+
f
"
coherences_
{
'
-
'
.
join
(
all_labels
)
}
.png
"
,
file_path
=
root_output_path
+
os
.
sep
+
f
"
coherences_
{
'
-
'
.
join
(
all_labels
)
}
_train
.png
"
,
all_experiment_scores
=
coherence_values
,
all_labels
=
all_labels
,
x_value
=
with_params_extracted_forest_sizes
,
...
...
@@ -801,14 +829,14 @@ if __name__ == "__main__":
logger
.
info
(
f
'
Computing preds coherence plot...
'
)
if
args
.
plot_preds_correlation
:
root_output_path
=
os
.
path
.
join
(
args
.
results_dir
,
args
.
dataset_name
,
f
'
stage5_
new
'
)
root_output_path
=
os
.
path
.
join
(
args
.
results_dir
,
args
.
dataset_name
,
f
'
stage5_
27-03-20
'
)
pathlib
.
Path
(
root_output_path
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
all_labels
=
[
'
none
'
,
'
random
'
,
'
omp
'
,
'
kmeans
'
,
'
similarity_similarities
'
,
'
similarity_predictions
'
,
'
ensemble
'
]
_
,
_
,
_
,
with_params_extracted_forest_sizes
,
_
=
\
extract_scores_across_seeds_and_extracted_forest_sizes
(
args
.
models_dir
,
args
.
results_dir
,
2
)
correlation_values
=
[
extract_correlations_across_seeds
(
args
.
models_dir
,
args
.
results_dir
,
i
)
for
i
in
args
.
experiment_ids
]
Plotter
.
plot_stage2_losses
(
file_path
=
root_output_path
+
os
.
sep
+
f
"
correlations_
{
'
-
'
.
join
(
all_labels
)
}
.png
"
,
file_path
=
root_output_path
+
os
.
sep
+
f
"
correlations_
{
'
-
'
.
join
(
all_labels
)
}
_train
.png
"
,
all_experiment_scores
=
correlation_values
,
all_labels
=
all_labels
,
x_value
=
with_params_extracted_forest_sizes
,
...
...
@@ -818,7 +846,7 @@ if __name__ == "__main__":
logger
.
info
(
f
'
Computing preds correlation plot...
'
)
if
args
.
plot_forest_strength
:
root_output_path
=
os
.
path
.
join
(
args
.
results_dir
,
args
.
dataset_name
,
f
'
stage5_
strength
'
)
root_output_path
=
os
.
path
.
join
(
args
.
results_dir
,
args
.
dataset_name
,
f
'
stage5_
27-03-20
'
)
pathlib
.
Path
(
root_output_path
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
_
,
_
,
_
,
with_params_extracted_forest_sizes
,
_
=
\
...
...
@@ -837,7 +865,7 @@ if __name__ == "__main__":
#random_selected_trees_scores = extract_selected_trees_scores_across_seeds(
# args.models_dir, args.results_dir, 2, weighted=True)
omp_selected_trees_scores
=
extract_selected_trees_scores_across_seeds
(
"""
omp_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 3, weighted=True)
similarity_similarities_selected_trees_scores = extract_selected_trees_scores_across_seeds(
...
...
@@ -847,27 +875,25 @@ if __name__ == "__main__":
# args.models_dir, args.results_dir, 7)
ensemble_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args
.
models_dir
,
args
.
results_dir
,
8
,
weighted
=
True
)
args.models_dir, args.results_dir, 8, weighted=True)
"""
# kmeans=5
# similarity_similarities=6
# similarity_predictions=7
# ensemble=8
all_
selected_trees_score
s
=
[
random
_selected_trees_scores
,
omp
_selected_trees_scores
,
similarity_similarities
_selected_trees_scores
,
ensemble_selected_trees_score
s
]
all_
label
s
=
[
'
random
'
,
'
omp
'
,
'
kmeans
'
,
'
similarity_similarities
'
,
'
similarity_predictions
'
,
'
ensemble
'
]
strengths_values
=
[
extract_strengths_across_seeds
(
args
.
models_dir
,
args
.
results_dir
,
i
)
for
i
in
args
.
experiment_id
s
]
with
open
(
'
california_housing_forest_strength_scores.pickle
'
,
'
wb
'
)
as
file
:
pickle
.
dump
(
all_selected_trees_scores
,
file
)
"""
with open(
'
california_housing_forest_strength_scores.pickle
'
,
'
wb
'
) as file:
pickle.dump(all_selected_trees_scores, file)
"""
"""
with open(
'
forest_strength_scores.pickle
'
,
'
rb
'
) as file:
all_selected_trees_scores = pickle.load(file)
"""
all_labels
=
[
'
random
'
,
'
omp
'
,
'
similarity_similarities
'
,
'
ensemble
'
]
Plotter
.
plot_stage2_losses
(
file_path
=
root_output_path
+
os
.
sep
+
f
"
forest_strength_
{
'
-
'
.
join
(
all_labels
)
}
_v2_sota
.png
"
,
all_experiment_scores
=
all_selected_trees_scor
es
,
file_path
=
root_output_path
+
os
.
sep
+
f
"
forest_strength_
{
'
-
'
.
join
(
all_labels
)
}
.png
"
,
all_experiment_scores
=
strengths_valu
es
,
all_labels
=
all_labels
,
x_value
=
with_params_extracted_forest_sizes
,
xlabel
=
'
Number of trees extracted
'
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment