Select Git revision
compute_results.py
compute_results.py 54.36 KiB
from bolsonaro.models.model_raw_results import ModelRawResults
from bolsonaro.visualization.plotter import Plotter
from bolsonaro import LOG_PATH
from bolsonaro.error_handling.logger_factory import LoggerFactory
from bolsonaro.data.dataset_parameters import DatasetParameters
from bolsonaro.data.dataset_loader import DatasetLoader
import argparse
import pathlib
from dotenv import find_dotenv, load_dotenv
import os
import numpy as np
import pickle
from tqdm import tqdm
from scipy.stats import rankdata
from pyrsa.vis.colors import rdm_colormap
from pyrsa.rdm.calc import calc_rdm
from pyrsa.data.dataset import Dataset
import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.preprocessing import normalize
def vect2triu(dsm_vect, dim=None):
if not dim:
# sqrt(X²) \simeq sqrt(X²-X) -> sqrt(X²) = ceil(sqrt(X²-X))
dim = int(np.ceil(np.sqrt(dsm_vect.shape[1] * 2)))
dsm = np.zeros((dim,dim))
ind_up = np.triu_indices(dim, 1)
dsm[ind_up] = dsm_vect
return dsm
def triu2full(dsm_triu):
dsm_full = np.copy(dsm_triu)
ind_low = np.tril_indices(dsm_full.shape[0], -1)
dsm_full[ind_low] = dsm_full.T[ind_low]
return dsm_full
def plot_RDM(rdm, file_path, condition_number):
rdm = triu2full(vect2triu(rdm, condition_number))
fig = plt.figure()
cols = rdm_colormap(condition_number)
plt.imshow(rdm, cmap=cols)
plt.colorbar()
plt.savefig(file_path, dpi=200)
plt.close()
def retreive_extracted_forest_sizes_number(models_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
seed = os.listdir(experiment_seed_root_path)[0]
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes'
return len(os.listdir(extracted_forest_sizes_root_path))
def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_dir, experiment_id, weights=True, extracted_forest_sizes=list()):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
"""
Dictionaries to temporarly store the scalar results with the following structure:
{seed_1: [score_1, ..., score_m], ... seed_n: [score_1, ..., score_k]}
"""
experiment_train_scores = dict()
experiment_dev_scores = dict()
experiment_test_scores = dict()
all_extracted_forest_sizes = list()
# Used to check if all losses were computed using the same metric (it should be the case)
experiment_score_metrics = list()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_train_scores[seed] = list()
experiment_dev_scores[seed] = list()
experiment_test_scores[seed] = list()
if len(extracted_forest_sizes) == 0:
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
all_extracted_forest_sizes.append(list(map(int, extracted_forest_sizes)))
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
if weights:
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
else:
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size + '_no_weights'
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
# Save the scores
experiment_train_scores[seed].append(model_raw_results.train_score)
experiment_dev_scores[seed].append(model_raw_results.dev_score)
experiment_test_scores[seed].append(model_raw_results.test_score)
# Save the metric
experiment_score_metrics.append(model_raw_results.score_metric)
# Sanity checks
if len(set(experiment_score_metrics)) > 1:
raise ValueError("The metrics used to compute the scores aren't the sames across seeds.")
if len(set([sum(extracted_forest_sizes) for extracted_forest_sizes in all_extracted_forest_sizes])) != 1:
raise ValueError("The extracted forest sizes aren't the sames across seeds.")
return experiment_train_scores, experiment_dev_scores, experiment_test_scores, \
all_extracted_forest_sizes[0], experiment_score_metrics[0]
def extract_scores_across_seeds_and_forest_size(models_dir, results_dir, experiment_id, extracted_forest_sizes_number):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
"""
Dictionaries to temporarly store the scalar results with the following structure:
{seed_1: [score_1, ..., score_m], ... seed_n: [score_1, ..., score_k]}
"""
experiment_train_scores = dict()
experiment_dev_scores = dict()
experiment_test_scores = dict()
# Used to check if all losses were computed using the same metric (it should be the case)
experiment_score_metrics = list()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
forest_size_root_path = experiment_seed_path + os.sep + 'forest_size' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_train_scores[seed] = list()
experiment_dev_scores[seed] = list()
experiment_test_scores[seed] = list()
forest_size = os.listdir(forest_size_root_path)[0]
# models/{experiment_id}/seeds/{seed}/forest_size/{forest_size}
forest_size_path = forest_size_root_path + os.sep + forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(forest_size_path)
for _ in range(extracted_forest_sizes_number):
# Save the scores
experiment_train_scores[seed].append(model_raw_results.train_score)
experiment_dev_scores[seed].append(model_raw_results.dev_score)
experiment_test_scores[seed].append(model_raw_results.test_score)
# Save the metric
experiment_score_metrics.append(model_raw_results.score_metric)
if len(set(experiment_score_metrics)) > 1:
raise ValueError("The metrics used to compute the scores aren't the same everytime")
return experiment_train_scores, experiment_dev_scores, experiment_test_scores, experiment_score_metrics[0]
def extract_weights_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_weights = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_weights[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
# Save the weights
experiment_weights[seed].append(model_raw_results.model_weights)
return experiment_weights
def extract_correlations_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_correlations = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_correlations[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
experiment_correlations[seed].append(model_raw_results.train_correlation)
return experiment_correlations
def extract_coherences_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_coherences = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_coherences[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
experiment_coherences[seed].append(model_raw_results.train_coherence)
return experiment_coherences
def extract_strengths_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_strengths = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
for seed in seeds:
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
# {{seed}:[]}
experiment_strengths[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
experiment_strengths[seed].append(model_raw_results.test_strength)
return experiment_strengths
def extract_selected_trees_scores_across_seeds(models_dir, results_dir, experiment_id, weighted=False):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_selected_trees_scores = dict()
print(f'[extract_selected_trees_scores_across_seeds] experiment_id: {experiment_id}')
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
with tqdm(seeds) as seed_bar:
for seed in seed_bar:
seed_bar.set_description(f'seed: {seed}')
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
dataset_parameters = DatasetParameters.load(experiment_seed_path, experiment_id)
dataset = DatasetLoader.load(dataset_parameters)
# {{seed}:[]}
experiment_selected_trees_scores[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree]
extracted_forest_sizes.sort(key=int)
with tqdm(extracted_forest_sizes) as extracted_forest_size_bar:
for extracted_forest_size in extracted_forest_size_bar:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
selected_trees = None
with open(os.path.join(extracted_forest_size_path, 'selected_trees.pickle'), 'rb') as file:
selected_trees = pickle.load(file)
selected_trees_test_scores = np.array([tree.score(dataset.X_test, dataset.y_test) for tree in selected_trees])
if weighted:
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
weights = model_raw_results.model_weights
if type(weights) != str:
weights = weights[weights != 0]
score = np.mean(np.square(selected_trees_test_scores * weights))
else:
score = np.mean(np.square(selected_trees_test_scores))
else:
score = np.mean(selected_trees_test_scores)
experiment_selected_trees_scores[seed].append(score)
extracted_forest_size_bar.set_description(f'extracted_forest_size: {extracted_forest_size} - test_score: {round(score, 2)}')
extracted_forest_size_bar.update(1)
seed_bar.update(1)
return experiment_selected_trees_scores
def extract_selected_trees_across_seeds(models_dir, results_dir, experiment_id):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
experiment_selected_trees = dict()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
with tqdm(seeds) as seed_bar:
for seed in seed_bar:
seed_bar.set_description(f'seed: {seed}')
experiment_seed_path = experiment_seed_root_path + os.sep + seed # models/{experiment_id}/seeds/{seed}
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes' # models/{experiment_id}/seeds/{seed}/forest_size
dataset_parameters = DatasetParameters.load(experiment_seed_path, experiment_id)
dataset = DatasetLoader.load(dataset_parameters)
# {{seed}:[]}
experiment_selected_trees[seed] = list()
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
all_selected_trees_predictions = list()
with tqdm(extracted_forest_sizes) as extracted_forest_size_bar:
for extracted_forest_size in extracted_forest_size_bar:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
selected_trees = None
with open(os.path.join(extracted_forest_size_path, 'selected_trees.pickle'), 'rb') as file:
selected_trees = pickle.load(file)
#test_score = np.mean([tree.score(dataset.X_test, dataset.y_test) for tree in selected_trees])
#selected_trees_predictions = np.array([tree.score(dataset.X_test, dataset.y_test) for tree in selected_trees])
selected_trees_predictions = [tree.predict(dataset.X_test) for tree in selected_trees]
extracted_forest_size_bar.set_description(f'extracted_forest_size: {extracted_forest_size}')
#experiment_selected_trees[seed].append(test_score)
extracted_forest_size_bar.update(1)
selected_trees_predictions = np.array(selected_trees_predictions)
selected_trees_predictions = normalize(selected_trees_predictions)
"""mds = MDS(len(selected_trees_predictions))
Y = mds.fit_transform(selected_trees_predictions)
plt.scatter(Y[:, 0], Y[:, 1])
plt.savefig(f'test_mds_{experiment_id}.png')"""
if int(extracted_forest_size) <= 267:
forest_RDM = calc_rdm(Dataset(selected_trees_predictions), method='euclidean').get_vectors()
ranked_forest_RDM = np.apply_along_axis(rankdata, 1, forest_RDM.reshape(1, -1))
from scipy.cluster import hierarchy
RDM = triu2full(vect2triu(ranked_forest_RDM, int(extracted_forest_size)))
Z = hierarchy.linkage(RDM, 'average')
fig = plt.figure(figsize=(15, 8))
dn = hierarchy.dendrogram(Z)
plt.savefig(f'test_dendrogram_scores_id:{experiment_id}_seed:{seed}_size:{extracted_forest_size}.png')
plt.close()
plot_RDM(
rdm=ranked_forest_RDM,
file_path=f'test_scores_ranked_forest_RDM_id:{experiment_id}_seed:{seed}_size:{extracted_forest_size}.png',
condition_number=len(selected_trees_predictions)
)
break
seed_bar.update(1)
return experiment_selected_trees
if __name__ == "__main__":
# get environment variables in .env
load_dotenv(find_dotenv('.env'))
DEFAULT_RESULTS_DIR = os.environ["project_dir"] + os.sep + 'results'
DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models'
DEFAULT_PLOT_WEIGHT_DENSITY = False
DEFAULT_WO_LOSS_PLOTS = False
DEFAULT_PLOT_PREDS_COHERENCE = False
DEFAULT_PLOT_FOREST_STRENGTH = False
DEFAULT_COMPUTE_SELECTED_TREES_RDMS = False
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--stage', nargs='?', type=int, required=True, help='Specify the stage number among [1, 5].')
parser.add_argument('--experiment_ids', nargs='+', type=str, required=True, help='Compute the results of the specified experiment id(s).' + \
'stage=1: {{base_with_params}} {{random_with_params}} {{omp_with_params}} {{base_wo_params}} {{random_wo_params}} {{omp_wo_params}}' + \
'stage=2: {{no_normalization}} {{normalize_D}} {{normalize_weights}} {{normalize_D_and_weights}}' + \
'stage=3: {{train-dev_subset}} {{train-dev_train-dev_subset}} {{train-train-dev_subset}}' + \
'stage=5: {{base_with_params}} {{random_with_params}} {{omp_with_params}} [ensemble={{id}}] [similarity={{id}}] [kmean={{id}}]')
parser.add_argument('--dataset_name', nargs='?', type=str, required=True, help='Specify the dataset name. TODO: read it from models dir directly.')
parser.add_argument('--results_dir', nargs='?', type=str, default=DEFAULT_RESULTS_DIR, help='The output directory of the results.')
parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
parser.add_argument('--plot_weight_density', action='store_true', default=DEFAULT_PLOT_WEIGHT_DENSITY, help='Plot the weight density. Only working for regressor models for now.')
parser.add_argument('--wo_loss_plots', action='store_true', default=DEFAULT_WO_LOSS_PLOTS, help='Do not compute the loss plots.')
parser.add_argument('--plot_preds_coherence', action='store_true', default=DEFAULT_PLOT_PREDS_COHERENCE, help='Plot the coherence of the prediction trees.')
parser.add_argument('--plot_preds_correlation', action='store_true', default=DEFAULT_PLOT_PREDS_COHERENCE, help='Plot the correlation of the prediction trees.')
parser.add_argument('--plot_forest_strength', action='store_true', default=DEFAULT_PLOT_FOREST_STRENGTH, help='Plot the strength of the extracted forest.')
parser.add_argument('--compute_selected_trees_rdms', action='store_true', default=DEFAULT_COMPUTE_SELECTED_TREES_RDMS, help='Representation similarity analysis of the selected trees')
args = parser.parse_args()
if args.stage not in list(range(1, 6)):
raise ValueError('stage must be a supported stage id (i.e. [1, 5]).')
logger = LoggerFactory.create(LOG_PATH, os.path.basename(__file__))
logger.info('Compute results of with stage:{} - experiment_ids:{} - dataset_name:{} - results_dir:{} - models_dir:{}'.format(
args.stage, args.experiment_ids, args.dataset_name, args.results_dir, args.models_dir))
# Create recursively the results dir tree
pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True)
if args.stage == 1 and not args.wo_loss_plots:
if len(args.experiment_ids) != 6:
raise ValueError('In the case of stage 1, the number of specified experiment ids must be 6.')
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, int(args.experiment_ids[1]))
# Experiments that used the best hyperparameters found for this dataset
# base_with_params
logger.info('Loading base_with_params experiment scores...')
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, int(args.experiment_ids[0]),
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
with_params_extracted_forest_sizes, random_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, int(args.experiment_ids[1]))
# omp_with_params
logger.info('Loading omp_with_params experiment scores...')
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]))
# Experiments that didn't use the best hyperparameters found for this dataset
# base_wo_params
logger.info('Loading base_wo_params experiment scores...')
base_wo_params_train_scores, base_wo_params_dev_scores, base_wo_params_test_scores, \
base_wo_params_experiment_score_metric = extract_scores_across_seeds_and_forest_size(
args.models_dir, args.results_dir, int(args.experiment_ids[3]),
extracted_forest_sizes_number)
# random_wo_params
logger.info('Loading random_wo_params experiment scores...')
random_wo_params_train_scores, random_wo_params_dev_scores, random_wo_params_test_scores, \
wo_params_extracted_forest_sizes, random_wo_params_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[4]))
# omp_wo_params
logger.info('Loading omp_wo_params experiment scores...')
omp_wo_params_train_scores, omp_wo_params_dev_scores, omp_wo_params_test_scores, _, \
omp_wo_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[5]))
# Sanity check on the metrics retreived
if not (base_with_params_experiment_score_metric == random_with_params_experiment_score_metric ==
omp_with_params_experiment_score_metric == base_wo_params_experiment_score_metric ==
random_wo_params_experiment_score_metric ==
omp_wo_params_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = base_with_params_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage1')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
"""all_experiment_scores_with_params=[base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores,
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores,
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores],
all_experiment_scores_wo_params=[base_wo_params_train_scores, base_wo_params_dev_scores, base_wo_params_test_scores,
random_wo_params_train_scores, random_wo_params_dev_scores, random_wo_params_test_scores,
omp_wo_params_train_scores, omp_wo_params_dev_scores, omp_wo_params_test_scores],
all_labels=['base_with_params_train', 'base_with_params_dev', 'base_with_params_test',
'random_with_params_train', 'random_with_params_dev', 'random_with_params_test',
'omp_with_params_train', 'omp_with_params_dev', 'omp_with_params_test'],"""
Plotter.plot_stage1_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores_with_params=[base_with_params_test_scores,
random_with_params_test_scores,
omp_with_params_test_scores],
all_experiment_scores_wo_params=[base_wo_params_test_scores,
random_wo_params_test_scores,
omp_wo_params_test_scores],
all_labels=['base', 'random', 'omp'],
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing best and default hyperparameters'.format(args.dataset_name)
)
elif args.stage == 2 and not args.wo_loss_plots:
if len(args.experiment_ids) != 4:
raise ValueError('In the case of stage 2, the number of specified experiment ids must be 4.')
# no_normalization
logger.info('Loading no_normalization experiment scores...')
_, _, no_normalization_test_scores, extracted_forest_sizes, no_normalization_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[0]))
# normalize_D
logger.info('Loading normalize_D experiment scores...')
_, _, normalize_D_test_scores, _, normalize_D_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[1]))
# normalize_weights
logger.info('Loading normalize_weights experiment scores...')
_, _, normalize_weights_test_scores, _, normalize_weights_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[2]))
# normalize_D_and_weights
logger.info('Loading normalize_D_and_weights experiment scores...')
_, _, normalize_D_and_weights_test_scores, _, normalize_D_and_weights_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[3]))
# Sanity check on the metrics retreived
if not (no_normalization_experiment_score_metric == normalize_D_experiment_score_metric
== normalize_weights_experiment_score_metric == normalize_D_and_weights_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = no_normalization_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage2')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[no_normalization_test_scores, normalize_D_test_scores,
normalize_weights_test_scores, normalize_D_and_weights_test_scores],
all_labels=['no_normalization', 'normalize_D', 'normalize_weights', 'normalize_D_and_weights'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different normalizations'.format(args.dataset_name))
elif args.stage == 3 and not args.wo_loss_plots:
if len(args.experiment_ids) != 3:
raise ValueError('In the case of stage 3, the number of specified experiment ids must be 3.')
# train-dev_subset
logger.info('Loading train-dev_subset experiment scores...')
train_dev_subset_train_scores, train_dev_subset_dev_scores, train_dev_subset_test_scores, \
extracted_forest_sizes, train_dev_subset_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[0]))
# train-dev_train-dev_subset
logger.info('Loading train-dev_train-dev_subset experiment scores...')
train_dev_train_dev_subset_train_scores, train_dev_train_dev_subset_dev_scores, train_dev_train_dev_subset_test_scores, \
_, train_dev_train_dev_subset_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[1]))
# train-train-dev_subset
logger.info('Loading train-train-dev_subset experiment scores...')
train_train_dev_subset_train_scores, train_train_dev_subset_dev_scores, train_train_dev_subset_test_scores, \
_, train_train_dev_subset_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir,
int(args.experiment_ids[2]))
# Sanity check on the metrics retreived
if not (train_dev_subset_experiment_score_metric == train_dev_train_dev_subset_experiment_score_metric
== train_train_dev_subset_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = train_dev_subset_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage3')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[train_dev_subset_test_scores, train_dev_train_dev_subset_test_scores,
train_train_dev_subset_test_scores],
all_labels=['train,dev', 'train+dev,train+dev', 'train,train+dev'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))
"""Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[train_dev_subset_train_scores, train_train_dev_subset_train_scores,
train_train_dev_subset_train_scores, train_dev_subset_dev_scores, train_dev_train_dev_subset_dev_scores,
train_train_dev_subset_dev_scores, train_dev_subset_test_scores, train_dev_train_dev_subset_test_scores,
train_train_dev_subset_test_scores],
all_labels=['train,dev - train', 'train+dev,train+dev - train', 'train,train+dev - train',
'train,dev - dev', 'train+dev,train+dev - dev', 'train,train+dev - dev',
'train,dev - test', 'train+dev,train+dev - test', 'train,train+dev - test'],
x_value=extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing different training subsets'.format(args.dataset_name))"""
elif args.stage == 4 and not args.wo_loss_plots:
if len(args.experiment_ids) != 3:
raise ValueError('In the case of stage 4, the number of specified experiment ids must be 3.')
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, args.experiment_ids[1])
# base_with_params
logger.info('Loading base_with_params experiment scores...')
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, int(args.experiment_ids[0]),
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
with_params_extracted_forest_sizes, random_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, int(args.experiment_ids[1]))
# omp_with_params
logger.info('Loading omp_with_params experiment scores...')
"""omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric, experiment_weights = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, args.experiment_ids[2])"""
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]))
#omp_with_params_without_weights
logger.info('Loading omp_with_params without weights experiment scores...')
omp_with_params_without_weights_train_scores, omp_with_params_without_weights_dev_scores, omp_with_params_without_weights_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]), weights=False)
"""# base_with_params
logger.info('Loading base_with_params experiment scores 2...')
_, _, base_with_params_test_scores_2, \
_ = \
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, args.experiment_ids[3],
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores 2...')
_, _, random_with_params_test_scores_2, \
_, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, args.experiment_ids[4])"""
# Sanity check on the metrics retreived
if not (base_with_params_experiment_score_metric == random_with_params_experiment_score_metric
== omp_with_params_experiment_score_metric):
raise ValueError('Score metrics of all experiments must be the same.')
experiments_score_metric = base_with_params_experiment_score_metric
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage4')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[base_with_params_test_scores, random_with_params_test_scores, omp_with_params_test_scores,
omp_with_params_without_weights_test_scores],
all_labels=['base', 'random', 'omp', 'omp_without_weights'],
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
title='Loss values of {}\nusing best params of previous stages'.format(args.dataset_name))
elif args.stage == 5 and not args.wo_loss_plots:
# Retreive the extracted forest sizes number used in order to have a base forest axis as long as necessary
extracted_forest_sizes_number = retreive_extracted_forest_sizes_number(args.models_dir, int(args.experiment_ids[1]))
all_labels = list()
all_scores = list()
"""extracted_forest_sizes = np.unique(np.around(1000 *
np.linspace(0, 1.0,
30 + 1,
endpoint=True)[1:]).astype(np.int)).tolist()"""
#extracted_forest_sizes = [4, 7, 11, 14, 18, 22, 25, 29, 32, 36, 40, 43, 47, 50, 54, 58, 61, 65, 68, 72, 76, 79, 83, 86, 90, 94, 97, 101, 104, 108]
#extracted_forest_sizes = [str(forest_size) for forest_size in extracted_forest_sizes]
extracted_forest_sizes= list()
# base_with_params
logger.info('Loading base_with_params experiment scores...')
base_with_params_train_scores, base_with_params_dev_scores, base_with_params_test_scores, \
base_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_forest_size(args.models_dir, args.results_dir, int(args.experiment_ids[0]),
extracted_forest_sizes_number)
# random_with_params
logger.info('Loading random_with_params experiment scores...')
random_with_params_train_scores, random_with_params_dev_scores, random_with_params_test_scores, \
with_params_extracted_forest_sizes, random_with_params_experiment_score_metric = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, int(args.experiment_ids[1]),
extracted_forest_sizes=extracted_forest_sizes)
# omp_with_params
logger.info('Loading omp_with_params experiment scores...')
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]), extracted_forest_sizes=extracted_forest_sizes)
#omp_with_params_without_weights
logger.info('Loading omp_with_params without weights experiment scores...')
omp_with_params_without_weights_train_scores, omp_with_params_without_weights_dev_scores, omp_with_params_without_weights_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]), weights=False, extracted_forest_sizes=extracted_forest_sizes)
"""print(omp_with_params_dev_scores)
import sys
sys.exit(0)"""
all_labels = ['base', 'random', 'omp', 'omp_wo_weights']
#all_labels = ['base', 'random', 'omp']
omp_with_params_test_scores_new = dict()
filter_num = -1
"""filter_num = 9
for key, value in omp_with_params_test_scores.items():
omp_with_params_test_scores_new[key] = value[:filter_num]"""
all_scores = [base_with_params_test_scores, random_with_params_test_scores, omp_with_params_test_scores,
omp_with_params_without_weights_test_scores]
#all_scores = [base_with_params_dev_scores, random_with_params_dev_scores, omp_with_params_dev_scores,
# omp_with_params_without_weights_dev_scores]
#all_scores = [base_with_params_train_scores, random_with_params_train_scores, omp_with_params_train_scores,
# omp_with_params_without_weights_train_scores]
for i in range(3, len(args.experiment_ids)):
if 'kmeans' in args.experiment_ids[i]:
label = 'kmeans'
elif 'similarity_similarities' in args.experiment_ids[i]:
label = 'similarity_similarities'
elif 'similarity_predictions' in args.experiment_ids[i]:
label = 'similarity_predictions'
elif 'ensemble' in args.experiment_ids[i]:
label = 'ensemble'
elif 'omp_distillation' in args.experiment_ids[i]:
label = 'omp_distillation'
else:
logger.error('Invalid value encountered')
continue
logger.info(f'Loading {label} experiment scores...')
current_experiment_id = int(args.experiment_ids[i].split('=')[1])
current_train_scores, current_dev_scores, current_test_scores, _, _ = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, current_experiment_id)
all_labels.append(label)
all_scores.append(current_test_scores)
#all_scores.append(current_train_scores)
#all_scores.append(current_dev_scores)
output_path = os.path.join(args.results_dir, args.dataset_name, 'stage5_test_train,dev')
pathlib.Path(output_path).mkdir(parents=True, exist_ok=True)
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + f"losses_{'-'.join(all_labels)}_test_train,dev.png",
all_experiment_scores=all_scores,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=base_with_params_experiment_score_metric,
title='Loss values of {}\nusing best params of previous stages'.format(args.dataset_name), filter_num=filter_num)
"""if args.plot_weight_density:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage{args.stage}')
if args.stage == 1:
omp_experiment_ids = [('omp_with_params', args.experiment_ids[2]), ('omp_wo_params', args.experiment_ids[2])]
elif args.stage == 2:
omp_experiment_ids = [('no_normalization', args.experiment_ids[0]),
('normalize_D', args.experiment_ids[1]),
('normalize_weights', args.experiment_ids[2]),
('normalize_D_and_weights', args.experiment_ids[3])]
elif args.stage == 3:
omp_experiment_ids = [('train-dev_subset', args.experiment_ids[0]),
('train-dev_train-dev_subset', args.experiment_ids[1]),
('train-train-dev_subset', args.experiment_ids[2])]
elif args.stage == 4:
omp_experiment_ids = [('omp_with_params', args.experiment_ids[2])]
elif args.stage == 5:
omp_experiment_ids = [('omp_with_params', args.experiment_ids[2])]
for i in range(3, len(args.experiment_ids)):
if 'kmeans' in args.experiment_ids[i]:
label = 'kmeans'
elif 'similarity' in args.experiment_ids[i]:
label = 'similarity'
elif 'ensemble' in args.experiment_ids[i]:
label = 'ensemble'
else:
logger.error('Invalid value encountered')
continue
current_experiment_id = int(args.experiment_ids[i].split('=')[1])
omp_experiment_ids.append((label, current_experiment_id))
for (experiment_label, experiment_id) in omp_experiment_ids:
logger.info(f'Computing weight density plot for experiment {experiment_label}...')
experiment_weights = extract_weights_across_seeds(args.models_dir, args.results_dir, experiment_id)
Plotter.weight_density(experiment_weights, os.path.join(root_output_path, f'weight_density_{experiment_label}.png'))"""
if args.plot_weight_density:
logger.info(f'Computing weight density plot for experiment {experiment_label}...')
experiment_weights = extract_weights_across_seeds(args.models_dir, args.results_dir, experiment_id)
Plotter.weight_density(experiment_weights, os.path.join(root_output_path, f'weight_density_{experiment_label}.png'))
if args.plot_preds_coherence:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_27-03-20')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
all_labels = ['random', 'omp', 'kmeans', 'similarity_similarities', 'similarity_predictions', 'ensemble']
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
coherence_values = [extract_coherences_across_seeds(args.models_dir, args.results_dir, i) for i in args.experiment_ids]
Plotter.plot_stage2_losses(
file_path=root_output_path + os.sep + f"coherences_{'-'.join(all_labels)}_train.png",
all_experiment_scores=coherence_values,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel='Coherence',
title='Coherence values of {}'.format(args.dataset_name))
logger.info(f'Computing preds coherence plot...')
if args.plot_preds_correlation:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_27-03-20')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
all_labels = ['none', 'random', 'omp', 'kmeans', 'similarity_similarities', 'similarity_predictions', 'ensemble']
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
correlation_values = [extract_correlations_across_seeds(args.models_dir, args.results_dir, i) for i in args.experiment_ids]
Plotter.plot_stage2_losses(
file_path=root_output_path + os.sep + f"correlations_{'-'.join(all_labels)}_train.png",
all_experiment_scores=correlation_values,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel='correlation',
title='correlation values of {}'.format(args.dataset_name))
logger.info(f'Computing preds correlation plot...')
if args.plot_forest_strength:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_27-03-20')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
#all_selected_trees_scores = list()
#all_selected_trees_weighted_scores = list()
"""with tqdm(args.experiment_ids) as experiment_id_bar:
for experiment_id in experiment_id_bar:
experiment_id_bar.set_description(f'experiment_id: {experiment_id}')
selected_trees_scores, selected_trees_weighted_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, experiment_id)
all_selected_trees_scores.append(selected_trees_scores)
all_selected_trees_weighted_scores.append(selected_trees_weighted_scores)
experiment_id_bar.update(1)"""
#random_selected_trees_scores = extract_selected_trees_scores_across_seeds(
# args.models_dir, args.results_dir, 2, weighted=True)
"""omp_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 3, weighted=True)
similarity_similarities_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 6, weighted=True)
#similarity_predictions_selected_trees_scores = extract_selected_trees_scores_across_seeds(
# args.models_dir, args.results_dir, 7)
ensemble_selected_trees_scores = extract_selected_trees_scores_across_seeds(
args.models_dir, args.results_dir, 8, weighted=True)"""
# kmeans=5
# similarity_similarities=6
# similarity_predictions=7
# ensemble=8
all_labels = ['random', 'omp', 'kmeans', 'similarity_similarities', 'similarity_predictions', 'ensemble']
strengths_values = [extract_strengths_across_seeds(args.models_dir, args.results_dir, i) for i in args.experiment_ids]
"""with open('california_housing_forest_strength_scores.pickle', 'wb') as file:
pickle.dump(all_selected_trees_scores, file)"""
"""with open('forest_strength_scores.pickle', 'rb') as file:
all_selected_trees_scores = pickle.load(file)"""
Plotter.plot_stage2_losses(
file_path=root_output_path + os.sep + f"forest_strength_{'-'.join(all_labels)}.png",
all_experiment_scores=strengths_values,
all_labels=all_labels,
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel='Mean of selected tree scores on test set',
title='Forest strength of {}'.format(args.dataset_name))
if args.compute_selected_trees_rdms:
root_output_path = os.path.join(args.results_dir, args.dataset_name, f'stage5_strength')
pathlib.Path(root_output_path).mkdir(parents=True, exist_ok=True)
_, _, _, with_params_extracted_forest_sizes, _ = \
extract_scores_across_seeds_and_extracted_forest_sizes(args.models_dir, args.results_dir, 2)
all_selected_trees_scores = list()
with tqdm([2, 3, 8]) as experiment_id_bar:
for experiment_id in experiment_id_bar:
experiment_id_bar.set_description(f'experiment_id: {experiment_id}')
all_selected_trees_scores.append(extract_selected_trees_across_seeds(
args.models_dir, args.results_dir, experiment_id))
experiment_id_bar.update(1)
with open('forest_strength_scores.pickle', 'rb') as file:
all_selected_trees_scores = pickle.load(file)
logger.info('Done.')