Skip to content
Snippets Groups Projects
Select Git revision
  • 31edd1e6a0b4c1b437b84fc58a9a9bb10de80bb5
  • master default protected
2 results

OAR.2068279.stdout

Blame
  • DejasDejas's avatar
    Julien Dejasmin authored
    31edd1e6
    History
    OAR.2068279.stdout 3.96 KiB
    Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
    creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_15
    load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
    use 2 gpu who named:
    GeForce RTX 2080 Ti
    GeForce RTX 2080 Ti
    DataParallel(
      (module): VAE(
        (img_to_last_conv): Sequential(
          (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (1): ReLU()
          (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (3): ReLU()
          (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (5): ReLU()
          (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (7): ReLU()
        )
        (last_conv_to_continuous_features): Sequential(
          (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
          (1): ReLU()
        )
        (features_to_hidden_continue): Sequential(
          (0): Linear(in_features=256, out_features=30, bias=True)
          (1): ReLU()
        )
        (latent_to_features): Sequential(
          (0): Linear(in_features=15, out_features=256, bias=True)
          (1): ReLU()
        )
        (features_to_img): Sequential(
          (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
          (1): ReLU()
          (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (3): ReLU()
          (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (5): ReLU()
          (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (7): ReLU()
          (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
          (9): Sigmoid()
        )
      )
    )
    The number of parameters of model is 769185
    don't use continuous capacity
    => no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last'
    0/69092	Loss: 3015.823
    3200/69092	Loss: 2867.494
    6400/69092	Loss: 899.528
    9600/69092	Loss: 536.005
    12800/69092	Loss: 478.343
    16000/69092	Loss: 455.459
    19200/69092	Loss: 457.437
    22400/69092	Loss: 370.021
    25600/69092	Loss: 263.633
    28800/69092	Loss: 232.440
    32000/69092	Loss: 210.459
    35200/69092	Loss: 217.661
    38400/69092	Loss: 216.086
    41600/69092	Loss: 215.461
    44800/69092	Loss: 208.221
    48000/69092	Loss: 205.981
    51200/69092	Loss: 208.176
    54400/69092	Loss: 204.615
    57600/69092	Loss: 205.887
    60800/69092	Loss: 203.826
    64000/69092	Loss: 202.141
    67200/69092	Loss: 198.343
    Training time 0:03:51.208936
    Epoch: 1 Average loss: 427.71
    => saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 1)
    0/69092	Loss: 187.281
    3200/69092	Loss: 200.427
    6400/69092	Loss: 196.083
    9600/69092	Loss: 202.029
    12800/69092	Loss: 196.254
    16000/69092	Loss: 196.466
    19200/69092	Loss: 195.587
    22400/69092	Loss: 192.062
    25600/69092	Loss: 197.137
    28800/69092	Loss: 196.870
    32000/69092	Loss: 193.763
    35200/69092	Loss: 196.194
    38400/69092	Loss: 193.444
    41600/69092	Loss: 186.353
    44800/69092	Loss: 184.125
    48000/69092	Loss: 179.607
    51200/69092	Loss: 181.214
    54400/69092	Loss: 179.105
    57600/69092	Loss: 173.470
    60800/69092	Loss: 163.793
    64000/69092	Loss: 163.068
    67200/69092	Loss: 164.580
    Training time 0:03:46.574199
    Epoch: 2 Average loss: 186.57
    => saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 2)
    0/69092	Loss: 164.363
    3200/69092	Loss: 157.112
    6400/69092	Loss: 152.674
    9600/69092	Loss: 154.297
    12800/69092	Loss: 155.036
    16000/69092	Loss: 151.871
    19200/69092	Loss: 151.537
    22400/69092	Loss: 152.374
    25600/69092	Loss: 150.578
    28800/69092	Loss: 152.244
    32000/69092	Loss: 150.801
    35200/69092	Loss: 147.880
    38400/69092	Loss: 148.003
    41600/69092	Loss: 147.567