Skip to content
Snippets Groups Projects
Rl.py 3.02 KiB
Newer Older
Maxime Petit's avatar
Maxime Petit committed
import random
import torch
Franck Dary's avatar
Franck Dary committed
import torch.nn.functional as F
Maxime Petit's avatar
Maxime Petit committed

################################################################################
Franck Dary's avatar
Franck Dary committed
class ReplayMemory() :
  def __init__(self, capacity, stateSize) :
Franck Dary's avatar
Franck Dary committed
    self.capacity = capacity
    self.states = torch.zeros(capacity, stateSize, dtype=torch.long, device=getDevice())
    self.newStates = torch.zeros(capacity, stateSize, dtype=torch.long, device=getDevice())
    self.actions = torch.zeros(capacity, 1, dtype=torch.long, device=getDevice())
    self.rewards = torch.zeros(capacity, 1, device=getDevice())
    self.noNewStates = torch.zeros(capacity, dtype=torch.bool, device=getDevice())
Franck Dary's avatar
Franck Dary committed
    self.position = 0
Franck Dary's avatar
Franck Dary committed
    self.nbPushed = 0
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
  def push(self, state, action, newState, reward) :
    self.states[self.position] = state
    self.actions[self.position] = action
    if newState is not None :
      self.newStates[self.position] = newState
    self.noNewStates[self.position] = newState is None
Franck Dary's avatar
Franck Dary committed
    self.rewards[self.position] = reward 
Franck Dary's avatar
Franck Dary committed
    self.position = (self.position + 1) % self.capacity
Franck Dary's avatar
Franck Dary committed
    self.nbPushed += 1
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
  def sample(self, batchSize) :
    start = random.randint(0, len(self)-batchSize)
    end = start+batchSize
    return self.states[start:end], self.actions[start:end], self.newStates[start:end], self.noNewStates[start:end], self.rewards[start:end]
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
  def __len__(self):
Franck Dary's avatar
Franck Dary committed
    return min(self.nbPushed, self.capacity)
Franck Dary's avatar
Franck Dary committed
################################################################################
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
################################################################################
def selectAction(network, state, ts, config, missingLinks, probaRandom, probaOracle) :
  sample = random.random()
  if sample < probaRandom :
    return ts[random.randrange(len(ts))]
Franck Dary's avatar
Franck Dary committed
  elif sample < probaRandom+probaOracle :
    candidates = sorted([[trans.getOracleScore(config, missingLinks), trans] for trans in ts if trans.appliable(config)])
    return candidates[0][1] if len(candidates) > 0 else None
  else :
    with torch.no_grad() :
      output = network(torch.stack([state]))
      predIndex = int(torch.argmax(output))
      return ts[predIndex]
Maxime Petit's avatar
Maxime Petit committed
################################################################################

################################################################################
Franck Dary's avatar
Franck Dary committed
def optimizeModel(batchSize, policy_net, target_net, memory, optimizer) :
Franck Dary's avatar
Franck Dary committed
  if len(memory) < batchSize :
    return 0.0
  states, actions, nextStates, noNextStates, rewards = memory.sample(batchSize)
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
  predictedQ = policy_net(states).gather(1, actions)
  nextQ = target_net(nextStates).max(1)[0].detach().unsqueeze(0)
Franck Dary's avatar
Franck Dary committed
  nextQ = torch.transpose(nextQ, 0, 1)
  nextQ[noNextStates] = 0.0
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
  expectedReward = gamma*nextQ + rewards
Maxime Petit's avatar
Maxime Petit committed

Franck Dary's avatar
Franck Dary committed
  loss = F.smooth_l1_loss(predictedQ, expectedReward)
  optimizer.zero_grad()
  loss.backward()
  for param in policy_net.parameters() :
    if param.grad is not None :
      param.grad.data.clamp_(-1, 1)
Franck Dary's avatar
Franck Dary committed
  optimizer.step()
Franck Dary's avatar
Franck Dary committed
  return float(loss)
################################################################################
Maxime Petit's avatar
Maxime Petit committed