Newer
Older
import argparse
Franck Dary
committed
import json
Franck Dary
committed
import Util
from Transition import Transition
################################################################################
def printTS(ts, output) :
print("Transition Set :", [trans.name + ("" if trans.size is None else " "+str(trans.size)) for trans in transitionSet], file=output)
################################################################################
################################################################################
if __name__ == "__main__" :
parser = argparse.ArgumentParser()
parser.add_argument("mode", type=str,
help="What to do : train | decode")
parser.add_argument("type", type=str,
parser.add_argument("corpus", type=str,
help="Name of the CoNLL-U file. Train file for train mode and input file for decode mode.")
parser.add_argument("model", type=str,
help="Path to the model directory.")
parser.add_argument("--iter", "-n", default=5,
help="Number of training epoch.")
parser.add_argument("--batchSize", default=64,
help="Size of each batch.")
parser.add_argument("--seed", default=100,
help="Random seed.")
parser.add_argument("--lr", default=0.0001,
help="Learning rate.")
parser.add_argument("--gamma", default=0.99,
help="Importance given to future rewards.")
parser.add_argument("--bootstrap", default=None,
help="If not none, extract examples in bootstrap mode (oracle train only).")
parser.add_argument("--dev", default=None,
help="Name of the CoNLL-U file of the dev corpus.")
Franck Dary
committed
parser.add_argument("--incr", "-i", default=False, action="store_true",
help="If true, the neural network will be 'incremental' i.e. will not see right context words if they have never been the word index.")
parser.add_argument("--debug", "-d", default=False, action="store_true",
help="Print debug infos on stderr.")
parser.add_argument("--silent", "-s", default=False, action="store_true",
help="Don't print advancement infos.")
parser.add_argument("--transitions", default="eager",
help="Transition set to use (eager | swift).")
parser.add_argument("--ts", default="",
help="Comma separated list of supplementary transitions. Example \"BACK 1,BACK 2\"")
parser.add_argument("--reward", default="A",
help="Reward function to use (A,B,C,D,E)")
parser.add_argument("--probaRandom", default="0.6,4,0.1",
help="Evolution of probability to chose action at random : (start value, decay speed, end value)")
parser.add_argument("--probaOracle", default="0.3,2,0.0",
help="Evolution of probability to chose action from oracle : (start value, decay speed, end value)")
args = parser.parse_args()
os.makedirs(args.model, exist_ok=True)
Franck Dary
committed
Util.setDevice(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
print("Using device : %s"%Util.getDevice(), file=sys.stderr)
random.seed(args.seed)
torch.manual_seed(args.seed)
Franck Dary
committed
if args.bootstrap is not None :
args.bootstrap = int(args.bootstrap)
if args.transitions == "eager" :
transitionSet = [Transition(elem) for elem in (["SHIFT","REDUCE","LEFT","RIGHT"]+args.ts.split(',')) if len(elem) > 0]
elif args.transitions == "swift" :
transitionSet = [Transition(elem) for elem in (["SHIFT"]+["LEFT "+str(n) for n in range(1,6)]+["RIGHT "+str(n) for n in range(1,6)]+args.ts.split(',')) if len(elem) > 0]
else :
raise Exception("Unknown transition set '%s'"%args.transitions)
strategy = {"RIGHT" : 1, "SHIFT" : 1, "LEFT" : 0, "REDUCE" : 0}
json.dump([str(t) for t in transitionSet], open(args.model+"/transitions.json", "w"))
Franck Dary
committed
json.dump(strategy, open(args.model+"/strategy.json", "w"))
probas = [list(map(float, args.probaRandom.split(','))), list(map(float, args.probaOracle.split(',')))]
Train.trainMode(args.debug, args.corpus, args.type, transitionSet, strategy, args.model, int(args.iter), int(args.batchSize), args.dev, args.bootstrap, args.incr, args.reward, float(args.lr), float(args.gamma), probas, args.silent)
Franck Dary
committed
transNames = json.load(open(args.model+"/transitions.json", "r"))
transitionSet = [Transition(elem) for elem in transNames]
strategy = json.load(open(args.model+"/strategy.json", "r"))
printTS(transitionSet, sys.stderr)
Decode.decodeMode(args.debug, args.corpus, args.type, transitionSet, strategy, args.reward, args.model)
else :
print("ERROR : unknown mode '%s'"%args.mode, file=sys.stderr)
exit(1)
################################################################################