Skip to content
Snippets Groups Projects
dev.cpp 4.96 KiB
Newer Older
  • Learn to ignore specific revisions
  • Franck Dary's avatar
    Franck Dary committed
    #include <cstdio>
    
    #include "fmt/core.h"
    
    Franck Dary's avatar
    Franck Dary committed
    #include "util.hpp"
    
    #include "BaseConfig.hpp"
    #include "SubConfig.hpp"
    
    #include "TransitionSet.hpp"
    
    #include "TestNetwork.hpp"
    
    #include "ConfigDataset.hpp"
    
    Franck Dary's avatar
    Franck Dary committed
    
    
    Franck Dary's avatar
    Franck Dary committed
    constexpr int batchSize = 50;
    constexpr int nbExamples = 350000;
    constexpr int embeddingSize = 20;
    constexpr int nbClasses = 15;
    constexpr int nbWordsPerDatapoint = 5;
    constexpr int maxNbEmbeddings = 1000000;
    
    Franck Dary's avatar
    Franck Dary committed
    //3m15s
    struct NetworkImpl : torch::nn::Module
    {
      torch::nn::Linear linear{nullptr};
      torch::nn::Embedding wordEmbeddings{nullptr};
      NetworkImpl()
    
    Franck Dary's avatar
    Franck Dary committed
        linear = register_module("dense_linear", torch::nn::Linear(embeddingSize, nbClasses));
        wordEmbeddings = register_module("sparse_word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(maxNbEmbeddings, embeddingSize).sparse(true)));
    
    Franck Dary's avatar
    Franck Dary committed
      };
      torch::Tensor forward(const torch::Tensor & input)
      {
        // I have a batch of sentences (list of word embeddings), so as the sentence embedding I take the mean of the embedding of its words
        auto embeddingsOfInput = wordEmbeddings(input).mean(1);
        return torch::softmax(linear(embeddingsOfInput),1);
      }
    };
    TORCH_MODULE(Network);
    
    Franck Dary's avatar
    Franck Dary committed
    
    
    Franck Dary's avatar
    Franck Dary committed
    int main(int argc, char * argv[])
    {
      auto nn = Network();
    
    Franck Dary's avatar
    Franck Dary committed
      torch::optim::SparseAdam sparseOptimizer(nn->parameters(), torch::optim::SparseAdamOptions(2e-4).beta1(0.5));
      torch::optim::Adam denseOptimizer(nn->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5));
    
    Franck Dary's avatar
    Franck Dary committed
      std::vector<std::pair<torch::Tensor,torch::Tensor>> batches;
      for (int nbBatch = 0; nbBatch < nbExamples / batchSize; ++nbBatch)
        batches.emplace_back(std::make_pair(torch::randint(maxNbEmbeddings,{batchSize,nbWordsPerDatapoint}, at::kLong), torch::randint(nbClasses, batchSize, at::kLong)));
    
    Franck Dary's avatar
    Franck Dary committed
    
    
    Franck Dary's avatar
    Franck Dary committed
      for (auto & batch : batches)
      {
    
    Franck Dary's avatar
    Franck Dary committed
        sparseOptimizer.zero_grad();
        denseOptimizer.zero_grad();
    
    Franck Dary's avatar
    Franck Dary committed
        auto prediction = nn(batch.first);
        auto loss = torch::nll_loss(torch::log(prediction), batch.second);
        loss.backward();
    
    Franck Dary's avatar
    Franck Dary committed
        sparseOptimizer.step();
        denseOptimizer.step();
    
    Franck Dary's avatar
    Franck Dary committed
      return 0;
    }
    
    
    Franck Dary's avatar
    Franck Dary committed
    //int main(int argc, char * argv[])
    //{
    //  if (argc != 5)
    //  {
    //    fmt::print(stderr, "needs 4 arguments.\n");
    //    exit(1);
    //  }
    //
    //  at::init_num_threads();
    //
    //  std::string machineFile = argv[1];
    //  std::string mcdFile = argv[2];
    //  std::string tsvFile = argv[3];
    //  //std::string rawFile = argv[4];
    //  std::string rawFile = "";
    //
    //  ReadingMachine machine(machineFile);
    //
    //  BaseConfig goldConfig(mcdFile, tsvFile, rawFile);
    //  SubConfig config(goldConfig);
    //
    //  config.setState(machine.getStrategy().getInitialState());
    //
    //  std::vector<torch::Tensor> contexts;
    //  std::vector<torch::Tensor> classes;
    //
    //  fmt::print("Generating dataset...\n");
    //
    //  Dict dict(Dict::State::Open);
    //
    //  while (true)
    //  {
    //    auto * transition = machine.getTransitionSet().getBestAppliableTransition(config);
    //    if (!transition)
    //      util::myThrow("No transition appliable !");
    //
    //    auto context = config.extractContext(5,5,dict);
    //    contexts.push_back(torch::from_blob(context.data(), {(long)context.size()}, at::kLong).clone());
    //
    //    int goldIndex = 3;
    //    auto gold = torch::from_blob(&goldIndex, {1}, at::kLong).clone();
    //
    //    classes.emplace_back(gold);
    //
    //    transition->apply(config);
    //    config.addToHistory(transition->getName());
    //
    //    auto movement = machine.getStrategy().getMovement(config, transition->getName());
    //    if (movement == Strategy::endMovement)
    //      break;
    //
    //    config.setState(movement.first);
    //    if (!config.moveWordIndex(movement.second))
    //      util::myThrow("Cannot move word index !");
    //
    //    if (config.needsUpdate())
    //      config.update();
    //  }
    //
    //  auto dataset = ConfigDataset(contexts, classes).map(torch::data::transforms::Stack<>());
    //
    //  int nbExamples = *dataset.size();
    //  fmt::print("Done! size={}\n", nbExamples);
    //
    //  int batchSize = 100;
    //  auto dataLoader = torch::data::make_data_loader(std::move(dataset), torch::data::DataLoaderOptions(batchSize).workers(0).max_jobs(0));
    //
    //  TestNetwork nn(machine.getTransitionSet().size(), 5);
    //  torch::optim::Adam optimizer(nn->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5));
    //
    //  for (int epoch = 1; epoch <= 1; ++epoch)
    //  {
    //    float totalLoss = 0.0;
    //    torch::Tensor example;
    //    int currentBatchNumber = 0;
    //
    //    for (auto & batch : *dataLoader)
    //    {
    //      optimizer.zero_grad();
    //
    //      auto data = batch.data;
    //      auto labels = batch.target.squeeze();
    //
    //      auto prediction = nn(data);
    //      example = prediction[0];
    //
    //      auto loss = torch::nll_loss(torch::log(prediction), labels);
    //      totalLoss += loss.item<float>();
    //      loss.backward();
    //      optimizer.step();
    //
    //      if (++currentBatchNumber*batchSize % 1000 == 0)
    //      {
    //        fmt::print("\rcurrent epoch : {:6.2f}%", 100.0*currentBatchNumber*batchSize/nbExamples);
    //        std::fflush(stdout);
    //      }
    //    }
    //
    //    fmt::print("Epoch {} : loss={:.2f}\n", epoch, totalLoss);
    //  }
    //
    //  return 0;
    //}
    //