Skip to content
Snippets Groups Projects
dev.cpp 8.62 KiB
Newer Older
Franck Dary's avatar
Franck Dary committed
#include <cstdio>
#include "fmt/core.h"
Franck Dary's avatar
Franck Dary committed
#include "util.hpp"
#include "BaseConfig.hpp"
#include "SubConfig.hpp"
#include "TransitionSet.hpp"
#include "TestNetwork.hpp"
#include "ConfigDataset.hpp"
Franck Dary's avatar
Franck Dary committed

Franck Dary's avatar
Franck Dary committed
namespace torch
{
namespace optim
Franck Dary's avatar
Franck Dary committed
{
Franck Dary's avatar
Franck Dary committed

class SparseAdam : public Optimizer
{
  public:

  template <typename ParameterContainer>
  explicit SparseAdam(ParameterContainer&& parameters, const AdamOptions& options_)
      : Optimizer(std::forward<ParameterContainer>(parameters)),
        options(options_)
Franck Dary's avatar
Franck Dary committed
  void step() override
  {
    for (size_t i = 0; i < parameters_.size(); ++i)
    {
      Tensor p = parameters_.at(i);
      if (!p.grad().defined())
        continue;

      auto& exp_average = buffer_at(exp_average_buffers, i);
      auto& exp_average_sq = buffer_at(exp_average_sq_buffers, i);
  
      buffer_at(step_buffers, i) += 1;
      const auto bias_correction1 = 1 - std::pow(options.beta1(), buffer_at(step_buffers, i));
      const auto bias_correction2 = 1 - std::pow(options.beta2(), buffer_at(step_buffers, i));
      if (p.grad().is_sparse())
      {
        NoGradGuard guard;
        p.grad() = p.grad().coalesce();
        auto indices = p.grad().indices().squeeze();
        auto values = p.grad().values();
Franck Dary's avatar
Franck Dary committed
        auto old_exp_average_values = exp_average.sparse_mask(p.grad())._values();
        auto exp_average_update_values = values.sub(old_exp_average_values).mul_(1 - options.beta1());
        for (unsigned int j = 0; j < indices.size(0); j++)
          exp_average[indices[j].item<long>()] += exp_average_update_values[j];
        auto old_exp_average_sq_values = exp_average_sq.sparse_mask(p.grad())._values();
        auto exp_average_sq_update_values = values.pow(2).sub_(old_exp_average_sq_values).mul_(1 - options.beta2());
        for (unsigned int j = 0; j < indices.size(0); j++)
          exp_average_sq[indices[j].item<long>()] += exp_average_sq_update_values[j];
Franck Dary's avatar
Franck Dary committed
        auto numer = exp_average_update_values.add_(old_exp_average_values);
        exp_average_sq_update_values.add_(old_exp_average_sq_values);
        auto denom = exp_average_sq_update_values.sqrt_().add_(options.eps());
        const auto step_size = options.learning_rate() * std::sqrt(bias_correction2) / bias_correction1;
        auto divided = numer.div(denom);
        for (unsigned int j = 0; j < indices.size(0); j++)
          p.data()[indices[j].item<long>()] += -step_size*divided[j];
      }
      else
      {
        if (options.weight_decay() > 0)
        {
          NoGradGuard guard;
          p.grad() = p.grad() + options.weight_decay() * p;
        }
Franck Dary's avatar
Franck Dary committed
        exp_average.mul_(options.beta1()).add_(p.grad(), 1 - options.beta1());
        exp_average_sq.mul_(options.beta2()).addcmul_(p.grad(), p.grad(), 1 - options.beta2());
Franck Dary's avatar
Franck Dary committed
        Tensor denom;
        if (options.amsgrad())
        {
          auto& max_exp_average_sq = buffer_at(max_exp_average_sq_buffers, i);
          max_exp_average_sq = torch::max(max_exp_average_sq, exp_average_sq);
          denom = max_exp_average_sq / bias_correction2;
        }
        else
        {
          denom = exp_average_sq / bias_correction2;
        }
Franck Dary's avatar
Franck Dary committed
        const auto step_size = options.learning_rate() / bias_correction1;
Franck Dary's avatar
Franck Dary committed
        NoGradGuard guard;
        p.addcdiv_(exp_average, denom.sqrt() + options.eps(), -step_size);
      }
    }
  }
Franck Dary's avatar
Franck Dary committed
  void save(serialize::OutputArchive& archive) const override
Franck Dary's avatar
Franck Dary committed
    //serialize(*this, archive);
  }
Franck Dary's avatar
Franck Dary committed
  void load(serialize::InputArchive& archive) override
  {
    //serialize(*this, archive);
  }
Franck Dary's avatar
Franck Dary committed
  public :
Franck Dary's avatar
Franck Dary committed
  AdamOptions options;
Franck Dary's avatar
Franck Dary committed
  std::vector<int64_t> step_buffers;
  std::vector<Tensor> exp_average_buffers;
  std::vector<Tensor> exp_average_sq_buffers;
  std::vector<Tensor> max_exp_average_sq_buffers;
Franck Dary's avatar
Franck Dary committed
  private:
Franck Dary's avatar
Franck Dary committed
  SparseAdam() : options(0) {}
Franck Dary's avatar
Franck Dary committed
  template <typename Self, typename Archive>
  static void serialize(Self& self, Archive& archive)
  {
    _TORCH_OPTIM_SERIALIZE(step_buffers);
    _TORCH_OPTIM_SERIALIZE(exp_average_buffers);
    _TORCH_OPTIM_SERIALIZE(exp_average_sq_buffers);
    _TORCH_OPTIM_SERIALIZE(max_exp_average_sq_buffers);
Franck Dary's avatar
Franck Dary committed

Franck Dary's avatar
Franck Dary committed
} // torch
} // optim
Franck Dary's avatar
Franck Dary committed

Franck Dary's avatar
Franck Dary committed
constexpr int batchSize = 50;
constexpr int nbExamples = 350000;
constexpr int embeddingSize = 20;
constexpr int nbClasses = 15;
constexpr int nbWordsPerDatapoint = 5;
constexpr int maxNbEmbeddings = 1000000;
Franck Dary's avatar
Franck Dary committed
//3m15s
struct NetworkImpl : torch::nn::Module
{
  torch::nn::Linear linear{nullptr};
  torch::nn::Embedding wordEmbeddings{nullptr};
  NetworkImpl()
Franck Dary's avatar
Franck Dary committed
    linear = register_module("linear", torch::nn::Linear(embeddingSize, nbClasses));
    wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(maxNbEmbeddings, embeddingSize).sparse(false)));
  };
  torch::Tensor forward(const torch::Tensor & input)
  {
    // I have a batch of sentences (list of word embeddings), so as the sentence embedding I take the mean of the embedding of its words
    auto embeddingsOfInput = wordEmbeddings(input).mean(1);
    return torch::softmax(linear(embeddingsOfInput),1);
  }
};
TORCH_MODULE(Network);
Franck Dary's avatar
Franck Dary committed

Franck Dary's avatar
Franck Dary committed
int main(int argc, char * argv[])
{
  auto nn = Network();
  torch::optim::Adam optimizer(nn->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5).weight_decay(0.1));
  std::vector<std::pair<torch::Tensor,torch::Tensor>> batches;
  for (int nbBatch = 0; nbBatch < nbExamples / batchSize; ++nbBatch)
    batches.emplace_back(std::make_pair(torch::randint(maxNbEmbeddings,{batchSize,nbWordsPerDatapoint}, at::kLong), torch::randint(nbClasses, batchSize, at::kLong)));
Franck Dary's avatar
Franck Dary committed

Franck Dary's avatar
Franck Dary committed
  for (auto & batch : batches)
  {
    optimizer.zero_grad();
    auto prediction = nn(batch.first);
    auto loss = torch::nll_loss(torch::log(prediction), batch.second);
    loss.backward();
    optimizer.step();
Franck Dary's avatar
Franck Dary committed
  return 0;
}

Franck Dary's avatar
Franck Dary committed
//int main(int argc, char * argv[])
//{
//  if (argc != 5)
//  {
//    fmt::print(stderr, "needs 4 arguments.\n");
//    exit(1);
//  }
//
//  at::init_num_threads();
//
//  std::string machineFile = argv[1];
//  std::string mcdFile = argv[2];
//  std::string tsvFile = argv[3];
//  //std::string rawFile = argv[4];
//  std::string rawFile = "";
//
//  ReadingMachine machine(machineFile);
//
//  BaseConfig goldConfig(mcdFile, tsvFile, rawFile);
//  SubConfig config(goldConfig);
//
//  config.setState(machine.getStrategy().getInitialState());
//
//  std::vector<torch::Tensor> contexts;
//  std::vector<torch::Tensor> classes;
//
//  fmt::print("Generating dataset...\n");
//
//  Dict dict(Dict::State::Open);
//
//  while (true)
//  {
//    auto * transition = machine.getTransitionSet().getBestAppliableTransition(config);
//    if (!transition)
//      util::myThrow("No transition appliable !");
//
//    auto context = config.extractContext(5,5,dict);
//    contexts.push_back(torch::from_blob(context.data(), {(long)context.size()}, at::kLong).clone());
//
//    int goldIndex = 3;
//    auto gold = torch::from_blob(&goldIndex, {1}, at::kLong).clone();
//
//    classes.emplace_back(gold);
//
//    transition->apply(config);
//    config.addToHistory(transition->getName());
//
//    auto movement = machine.getStrategy().getMovement(config, transition->getName());
//    if (movement == Strategy::endMovement)
//      break;
//
//    config.setState(movement.first);
//    if (!config.moveWordIndex(movement.second))
//      util::myThrow("Cannot move word index !");
//
//    if (config.needsUpdate())
//      config.update();
//  }
//
//  auto dataset = ConfigDataset(contexts, classes).map(torch::data::transforms::Stack<>());
//
//  int nbExamples = *dataset.size();
//  fmt::print("Done! size={}\n", nbExamples);
//
//  int batchSize = 100;
//  auto dataLoader = torch::data::make_data_loader(std::move(dataset), torch::data::DataLoaderOptions(batchSize).workers(0).max_jobs(0));
//
//  TestNetwork nn(machine.getTransitionSet().size(), 5);
//  torch::optim::Adam optimizer(nn->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5));
//
//  for (int epoch = 1; epoch <= 1; ++epoch)
//  {
//    float totalLoss = 0.0;
//    torch::Tensor example;
//    int currentBatchNumber = 0;
//
//    for (auto & batch : *dataLoader)
//    {
//      optimizer.zero_grad();
//
//      auto data = batch.data;
//      auto labels = batch.target.squeeze();
//
//      auto prediction = nn(data);
//      example = prediction[0];
//
//      auto loss = torch::nll_loss(torch::log(prediction), labels);
//      totalLoss += loss.item<float>();
//      loss.backward();
//      optimizer.step();
//
//      if (++currentBatchNumber*batchSize % 1000 == 0)
//      {
//        fmt::print("\rcurrent epoch : {:6.2f}%", 100.0*currentBatchNumber*batchSize/nbExamples);
//        std::fflush(stdout);
//      }
//    }
//
//    fmt::print("Epoch {} : loss={:.2f}\n", epoch, totalLoss);
//  }
//
//  return 0;
//}
//