Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include "ContextualModule.hpp"
ContextualModuleImpl::ContextualModuleImpl(std::string name, const std::string & definition, std::filesystem::path path) : path(path)
{
setName(name);
std::regex regex("(?:(?:\\s|\\t)*)Window\\{(.*)\\}(?:(?:\\s|\\t)*)Columns\\{(.*)\\}(?:(?:\\s|\\t)*)(\\S+)\\{(.*)\\}(?:(?:\\s|\\t)*)In\\{(.*)\\}(?:(?:\\s|\\t)*)Out\\{(.*)\\}(?:(?:\\s|\\t)*)w2v\\{(.*)\\}(?:(?:\\s|\\t)*)Targets\\{(.*)\\}(?:(?:\\s|\\t)*)");
if (!util::doIfNameMatch(regex, definition, [this,&definition](auto sm)
{
try
{
auto splited = util::split(sm.str(1), ' ');
if (splited.size() != 2)
util::myThrow("bad Window, expected 2 indexes");
window = std::make_pair(std::stoi(splited[0]), std::stoi(splited[1]));
auto funcColumns = util::split(sm.str(2), ' ');
columns.clear();
for (auto & funcCol : funcColumns)
{
functions.emplace_back() = getFunction(funcCol);
columns.emplace_back(util::split(funcCol, ':').back());
}
auto subModuleType = sm.str(3);
auto subModuleArguments = util::split(sm.str(4), ' ');
auto options = MyModule::ModuleOptions(true)
.bidirectional(std::stoi(subModuleArguments[0]))
.num_layers(std::stoi(subModuleArguments[1]))
.dropout(std::stof(subModuleArguments[2]))
.complete(std::stoi(subModuleArguments[3]));
for (auto & target : util::split(sm.str(8), ' '))
{
auto splited = util::split(target, '.');
if (splited.size() != 2 and splited.size() != 3)
util::myThrow(fmt::format("invalid target '{}' expected 'object.index(.childIndex)'", target));
targets.emplace_back(std::make_tuple(Config::str2object(splited[0]), std::stoi(splited[1]), splited.size() == 3 ? std::optional<int>(std::stoi(splited[2])) : std::optional<int>()));
}
inSize = std::stoi(sm.str(5));
outSize = std::stoi(sm.str(6));
if (outSize % 2)
util::myThrow("odd out size is not supported");
if (subModuleType == "LSTM")
myModule = register_module("myModule", LSTM(columns.size()*inSize, outSize, options));
else if (subModuleType == "GRU")
myModule = register_module("myModule", GRU(columns.size()*inSize, outSize, options));
else if (subModuleType == "Concat")
myModule = register_module("myModule", Concat(inSize));
else
util::myThrow(fmt::format("unknown sumodule type '{}'", subModuleType));
auto pathes = util::split(w2vFiles.string(), ' ');
for (auto & p : pathes)
{
auto splited = util::split(p, ',');
if (splited.size() != 2)
util::myThrow("expected 'prefix,file.w2v'");
auto pretrained = getDict().loadWord2Vec(this->path / splited[1], splited[0]);
if (pretrained)
{
getDict().setState(Dict::State::Closed);
dictSetPretrained(true);
}
}
} catch (std::exception & e) {util::myThrow(fmt::format("{} in '{}'",e.what(),definition));}
}))
util::myThrow(fmt::format("invalid definition '{}'", definition));
}
std::size_t ContextualModuleImpl::getOutputSize()
{
return targets.size()*outSize;
}
std::size_t ContextualModuleImpl::getInputSize()
{
return columns.size()*(4+window.second-window.first)+targets.size();
void ContextualModuleImpl::addToContext(torch::Tensor & context, const Config & config)
{
auto & dict = getDict();
std::vector<long> contextIndexes;
std::vector<long> targetIndexes;
std::map<long,long> configIndex2ContextIndex;
Franck Dary
committed
contextIndexes.emplace_back(-1);
contextIndexes.emplace_back(-2);
contextIndexes.emplace_back(-3);
for (long i = window.first; i <= window.second; i++)
{
if (config.hasRelativeWordIndex(Config::Object::Buffer, i))
{
contextIndexes.emplace_back(config.getRelativeWordIndex(Config::Object::Buffer, i));
configIndex2ContextIndex[contextIndexes.back()] = contextIndexes.size()-1;
}
else
}
for (auto & target : targets)
if (config.hasRelativeWordIndex(std::get<0>(target), std::get<1>(target)))
{
int baseIndex = config.getRelativeWordIndex(std::get<0>(target), std::get<1>(target));
if (!std::get<2>(target))
targetIndexes.emplace_back(baseIndex);
else
{
int childIndex = *std::get<2>(target);
auto childs = util::split(std::string(config.getAsFeature(Config::childsColName, baseIndex)), '|');
Franck Dary
committed
int candidate = -2;
if (childIndex >= 0 and childIndex < (int)childs.size())
candidate = std::stoi(childs[childIndex]);
else if (childIndex < 0 and ((int)childs.size())+childIndex >= 0)
candidate = std::stoi(childs[childs.size()+childIndex]);
targetIndexes.emplace_back(candidate);
}
}
else
targetIndexes.emplace_back(-1);
int insertIndex = 0;
for (auto index : contextIndexes)
for (unsigned int colIndex = 0; colIndex < columns.size(); colIndex++)
{
auto & col = columns[colIndex];
if (index == -1)
{
context[firstInputIndex+insertIndex] = dict.getIndexOrInsert(Dict::nullValueStr, col);
context[firstInputIndex+insertIndex] = dict.getIndexOrInsert(Dict::noChildValueStr, col);
context[firstInputIndex+insertIndex] = dict.getIndexOrInsert(Dict::oobValueStr, col);
else
{
int dictIndex;
if (col == Config::idColName)
{
std::string value;
if (config.isMultiwordPredicted(index))
value = "token";
dictIndex = dict.getIndexOrInsert(value, col);
{
std::string featureValue = config.getAsFeature(col, index);
dictIndex = dict.getIndexOrInsert(functions[colIndex](featureValue), col);
context[firstInputIndex+insertIndex] = dictIndex;
}
for (auto index : targetIndexes)
{
if (configIndex2ContextIndex.count(index))
context[firstInputIndex+insertIndex] = configIndex2ContextIndex.at(index);
// -1 == doesn't exist (s.0 when no stack)
if (index == -1)
context[firstInputIndex+insertIndex] = 0;
// -2 == nochild
else if (index == -2)
context[firstInputIndex+insertIndex] = 1;
// other == out of context bounds
else
context[firstInputIndex+insertIndex] = 2;
torch::Tensor batchedIndexSelect(torch::Tensor input, int dim, torch::Tensor index)
{
for (int i = 1; i < input.dim(); i++)
if (i != dim)
index = index.unsqueeze(i);
std::vector<long> expanse(input.dim());
for (unsigned int i = 1; i < expanse.size(); i++)
expanse[i] = input.size(i);
expanse[0] = -1;
expanse[dim] = -1;
index = index.expand(expanse);
return torch::gather(input, dim, index);
}
torch::Tensor ContextualModuleImpl::forward(torch::Tensor input)
{
auto context = wordEmbeddings(input.narrow(1, firstInputIndex, getInputSize()-targets.size())).view({input.size(0), (4+window.second-window.first), -1});
auto focusedIndexes = input.narrow(1, firstInputIndex+getInputSize()-targets.size(), targets.size());
auto out = myModule->forward(context);
return batchedIndexSelect(out, 1, focusedIndexes).view({input.size(0), -1});
}
void ContextualModuleImpl::registerEmbeddings()
{
if (!wordEmbeddings)
wordEmbeddings = register_module("embeddings", WordEmbeddings(getDict().size(), inSize));
auto pathes = util::split(w2vFiles.string(), ' ');
for (auto & p : pathes)
{
auto splited = util::split(p, ',');
loadPretrainedW2vEmbeddings(wordEmbeddings->get(), path / splited[1], splited[0]);