Skip to content
Snippets Groups Projects
Commit cada5d4e authored by Dominique Benielli's avatar Dominique Benielli
Browse files

tets passed

parent 4a41faa5
No related branches found
No related tags found
No related merge requests found
Pipeline #3928 passed
:orphan:
.. _sphx_glr_tutorial_auto_examples_sg_execution_times:
Computation times Computation times
================= =================
......
...@@ -169,7 +169,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): ...@@ -169,7 +169,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin):
self.U_dict = self.K_._todict() self.U_dict = self.K_._todict()
# Return the classifier # Return the classifier
self.learn_mvml(learn_A=self.learn_A, learn_w=self.learn_w, n_loops=self.n_loops) self.A, self.g, self.w = self.learn_mvml(learn_A=self.learn_A, learn_w=self.learn_w, n_loops=self.n_loops)
if self.warning_message: if self.warning_message:
import logging import logging
logging.warning("warning appears during fit process" + str(self.warning_message)) logging.warning("warning appears during fit process" + str(self.warning_message))
...@@ -270,7 +270,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): ...@@ -270,7 +270,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin):
return A_prev, g_prev return A_prev, g_prev
except ValueError: except ValueError:
self.warning_message["ValueError"] = self.warning_message.get("ValueError", 0) + 1 self.warning_message["ValueError"] = self.warning_message.get("ValueError", 0) + 1
return A_prev, g_prev return A_prev, g_prev, w_prev
# print("A_inv ",np.sum(A_inv)) # print("A_inv ",np.sum(A_inv))
# then calculate g (block-sparse multiplications in loop) using A_inv # then calculate g (block-sparse multiplications in loop) using A_inv
for v in range(views): for v in range(views):
...@@ -321,9 +321,6 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): ...@@ -321,9 +321,6 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin):
Z[:, v] = np.dot(self.U_dict[v], g[v * self.n_approx:(v + 1) * self.n_approx]).ravel() Z[:, v] = np.dot(self.U_dict[v], g[v * self.n_approx:(v + 1) * self.n_approx]).ravel()
w = np.dot(spli.pinv(np.dot(np.transpose(Z), Z)), np.dot(np.transpose(Z), self.y_)) w = np.dot(spli.pinv(np.dot(np.transpose(Z), Z)), np.dot(np.transpose(Z), self.y_))
loop_counter += 1 loop_counter += 1
self.g = g
self.w = w
self.A = A
return A, g, w return A, g, w
def _inv_best_precond(self, A, pos="precond_A"): def _inv_best_precond(self, A, pos="precond_A"):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment