diff --git a/doc/tutorial/auto_examples/sg_execution_times.rst b/doc/tutorial/auto_examples/sg_execution_times.rst index ad4622b36db4bb2023ac39373616e774ed97e72d..62105347fe8e70ac56b68a13ac7799cff81a93c7 100644 --- a/doc/tutorial/auto_examples/sg_execution_times.rst +++ b/doc/tutorial/auto_examples/sg_execution_times.rst @@ -1,7 +1,4 @@ -:orphan: - -.. _sphx_glr_tutorial_auto_examples_sg_execution_times: Computation times ================= diff --git a/multimodal/kernels/mvml.py b/multimodal/kernels/mvml.py index 99443db6bd2c59b86f9e06b2bd857180630902a9..7a122af124ac990fdf051bd412da7202e0422d12 100644 --- a/multimodal/kernels/mvml.py +++ b/multimodal/kernels/mvml.py @@ -169,7 +169,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): self.U_dict = self.K_._todict() # Return the classifier - self.learn_mvml(learn_A=self.learn_A, learn_w=self.learn_w, n_loops=self.n_loops) + self.A, self.g, self.w = self.learn_mvml(learn_A=self.learn_A, learn_w=self.learn_w, n_loops=self.n_loops) if self.warning_message: import logging logging.warning("warning appears during fit process" + str(self.warning_message)) @@ -270,7 +270,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): return A_prev, g_prev except ValueError: self.warning_message["ValueError"] = self.warning_message.get("ValueError", 0) + 1 - return A_prev, g_prev + return A_prev, g_prev, w_prev # print("A_inv ",np.sum(A_inv)) # then calculate g (block-sparse multiplications in loop) using A_inv for v in range(views): @@ -321,9 +321,6 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): Z[:, v] = np.dot(self.U_dict[v], g[v * self.n_approx:(v + 1) * self.n_approx]).ravel() w = np.dot(spli.pinv(np.dot(np.transpose(Z), Z)), np.dot(np.transpose(Z), self.y_)) loop_counter += 1 - self.g = g - self.w = w - self.A = A return A, g, w def _inv_best_precond(self, A, pos="precond_A"):