Newer
Older
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
#
# Copyright(c) 2020
# -----------------
#
# * Université d'Aix Marseille (AMU) -
# * Centre National de la Recherche Scientifique (CNRS) -
# * Université de Toulon (UTLN).
# * Copyright © 2019-2020 AMU, CNRS, UTLN
#
# Contributors:
# ------------
#
# * Sokol Koço <sokol.koco_AT_lis-lab.fr>
# * Cécile Capponi <cecile.capponi_AT_univ-amu.fr>
# * Florent Jaillet <florent.jaillet_AT_math.cnrs.fr>
# * Dominique Benielli <dominique.benielli_AT_univ-amu.fr>
# * Riikka Huusari <rikka.huusari_AT_univ-amu.fr>
# * Baptiste Bauvin <baptiste.bauvin_AT_univ-amu.fr>
# * Hachem Kadri <hachem.kadri_AT_lis-lab.fr>
#
# Description:
# -----------
#
# The multimodal package implement classifiers multiview,
# MumboClassifier class, MuComboClassifier class, MVML class, MKL class.
# compatible with sklearn
#
# Version:
# -------
#
# * multimodal version = 0.0.dev0
#
# -------
#
# License: New BSD License
#
#
# ######### COPYRIGHT #########
from distutils.command.clean import clean as _clean
from distutils.dir_util import remove_tree
from distutils.command.sdist import sdist
sys.exit()
# --------------------------------------------------------------------
# Clean target redefinition - force clean everything supprimer de la liste '^core\.*$',
relist = ['^.*~$', '^#.*#$', '^.*\.aux$', '^.*\.pyc$', '^.*\.o$']
reclean = []
USE_COPYRIGHT = True
try:
from copyright import writeStamp, eraseStamp
except ImportError:
USE_COPYRIGHT = False
###################
# Get Multimodal version
####################
def get_version():
v_text = open('VERSION').read().strip()
v_text_formted = '{"' + v_text.replace('\n', '","').replace(':', '":"')
v_text_formted += '"}'
v_dict = eval(v_text_formted)
########################
# Set Multimodal __version__
########################
def set_version(multimodal_dir, version):
filename = os.path.join(multimodal_dir, '__init__.py')
buf = ""
for line in open(filename, "rb"):
if not line.decode("utf8").startswith("__version__ ="):
buf += line.decode("utf8")
f = open(filename, "wb")
f.write(buf.encode("utf8"))
f.write(('__version__ = "%s"\n' % version).encode("utf8"))
for restring in relist:
reclean.append(re.compile(restring))
def wselect(args, dirname, names):
for n in names:
break
######################
# Custom clean command
######################
class clean(_clean):
def walkAndClean(self):
os.walk("..", wselect, [])
pass
def run(self):
clean.run(self)
if os.path.exists('build'):
shutil.rmtree('build')
for dirpath, dirnames, filenames in os.walk('iw'):(
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
for filename in filenames:
if (filename.endswith('.so') or
filename.endswith('.pyd') or
filename.endswith('.dll') or
filename.endswith('.pyc')):
os.unlink(os.path.join(dirpath, filename))
for dirname in dirnames:
if dirname == '__pycache__':
shutil.rmtree(os.path.join(dirpath, dirname))
##############################
# Custom sdist command
##############################
class m_sdist(sdist):
""" Build source package
WARNING : The stamping must be done on an default utf8 machine !
"""
def run(self):
if USE_COPYRIGHT:
writeStamp()
sdist.run(self)
# eraseStamp()
else:
sdist.run(self)
def setup_package():
"""Setup function"""
name = 'scikit-multimodallearn'
version = get_version()
multimodal_dir = 'multimodal'
set_version(multimodal_dir, version)
description = 'A scikit-learn compatible package for multimodal Classifiers'
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.rst'), encoding='utf-8') as readme:
long_description = readme.read()
group = 'dev'
url = 'https://gitlab.lis-lab.fr/{}/{}'.format(group, name)
project_urls = {
'Documentation': 'http://{}.pages.lis-lab.fr/{}'.format(group, name),
'Source': url,
'Tracker': '{}/issues'.format(url)}
author = 'Dominique Benielli and Sokol Koço and Florent Jaillet and Riikka Huusari ' \
'and Baptiste Bauvin and Cécile Capponi and Hachem Kadri'
author_email = 'contact.dev@lis-lab.fr'
license = 'newBSD'
classifiers = [
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU Lesser General Public License'
' v3 or later (LGPLv3+)',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Operating System :: Microsoft :: Windows',
keywords = ['machine learning, supervised learning, classification, '
'ensemble methods, boosting, kernel']
install_requires = ['scikit-learn>=0.24.2', 'numpy', 'scipy', 'cvxopt' ]
'doc': ['sphinx==4.5', 'numpydoc', 'sphinx_gallery', 'matplotlib', "sphinx_rtd_theme"]}
include_package_data = True
setup(name=name,
version=version,
description=description,
long_description=long_description,
url=url,
project_urls=project_urls,
author=author,
author_email=author_email,
license=license,
classifiers=classifiers,
keywords=keywords,
packages=packages,
install_requires=install_requires,
python_requires=python_requires,
extras_require=extras_require,
include_package_data=include_package_data)
if __name__ == "__main__":
setup_package()