Newer
Older
from distutils.command.clean import clean as _clean
from distutils.dir_util import remove_tree
from distutils.command.sdist import sdist
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
try:
import numpy
except:
raise 'Cannot build iw without numpy'
sys.exit()
# --------------------------------------------------------------------
# Clean target redefinition - force clean everything supprimer de la liste '^core\.*$',
relist = ['^.*~$', '^#.*#$', '^.*\.aux$', '^.*\.pyc$', '^.*\.o$']
reclean = []
USE_COPYRIGHT = True
try:
from copyright import writeStamp, eraseStamp
except ImportError:
USE_COPYRIGHT = False
###################
# Get Multimodal version
####################
def get_version():
v_text = open('VERSION').read().strip()
v_text_formted = '{"' + v_text.replace('\n', '","').replace(':', '":"')
v_text_formted += '"}'
v_dict = eval(v_text_formted)
return v_dict["multimodal"]
########################
# Set Multimodal __version__
########################
def set_version(multimodal_dir, version):
filename = os.path.join(multimodal_dir, '__init__.py')
buf = ""
for line in open(filename, "rb"):
if not line.decode("utf8").startswith("__version__ ="):
buf += line.decode("utf8")
f = open(filename, "wb")
f.write(buf.encode("utf8"))
f.write(('__version__ = "%s"\n' % version).encode("utf8"))
for restring in relist:
reclean.append(re.compile(restring))
def wselect(args, dirname, names):
for n in names:
for rev in reclean:
if (rev.match(n)):
os.remove("%s/%s" %(dirname, n))
break
######################
# Custom clean command
######################
class clean(_clean):
def walkAndClean(self):
os.walk("..", wselect, [])
pass
def run(self):
clean.run(self)
if os.path.exists('build'):
shutil.rmtree('build')
for dirpath, dirnames, filenames in os.walk('iw'):
for filename in filenames:
if (filename.endswith('.so') or
filename.endswith('.pyd') or
filename.endswith('.dll') or
filename.endswith('.pyc')):
os.unlink(os.path.join(dirpath, filename))
for dirname in dirnames:
if dirname == '__pycache__':
shutil.rmtree(os.path.join(dirpath, dirname))
##############################
# Custom sdist command
##############################
class m_sdist(sdist):
""" Build source package
WARNING : The stamping must be done on an default utf8 machine !
"""
def run(self):
if USE_COPYRIGHT:
writeStamp()
sdist.run(self)
# eraseStamp()
else:
sdist.run(self)
def setup_package():
"""Setup function"""
name = 'scikit-multimodallearn'
version = get_version()
multimodal_dir = 'multimodal'
set_version(multimodal_dir, version)
description = 'A scikit-learn compatible package for multimodal Classifiers'
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.rst'), encoding='utf-8') as readme:
long_description = readme.read()
group = 'dev'
url = 'https://gitlab.lis-lab.fr/{}/{}'.format(group, name)
project_urls = {
'Documentation': 'http://{}.pages.lis-lab.fr/{}'.format(group, name),
'Source': url,
'Tracker': '{}/issues'.format(url)}
author = 'Dominique Benielli and Sokol Koço and Florent Jaillet and Riikka Huusari ' \
'and Baptiste Bauvin and Cécile Capponi and Hachem Kadri'
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
author_email = 'contact.dev@lis-lab.fr'
license = 'newBSD'
classifiers = [
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU Lesser General Public License'
' v3 or later (LGPLv3+)',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX :: Linux',
'Operating System :: MacOS'],
keywords = ('machine learning, supervised learning, classification, '
'ensemble methods, boosting, kernel')
packages = find_packages(exclude=['*.tests'])
install_requires = ['scikit-learn>=0.19', 'numpy', 'scipy', 'cvxopt' ]
python_requires = '>=3.5'
extras_require = {
'dev': ['pytest', 'pytest-cov'],
'doc': ['sphinx', 'numpydoc', 'sphinx_gallery', 'matplotlib']}
include_package_data = True
setup(name=name,
version=version,
description=description,
long_description=long_description,
url=url,
project_urls=project_urls,
author=author,
author_email=author_email,
license=license,
classifiers=classifiers,
keywords=keywords,
packages=packages,
install_requires=install_requires,
python_requires=python_requires,
extras_require=extras_require,
include_package_data=include_package_data)
if __name__ == "__main__":
setup_package()