Skip to content
Snippets Groups Projects
Commit 9abab367 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Local ok

parent 3b59eabe
No related branches found
No related tags found
No related merge requests found
Pipeline #4360 failed
# The base configuration of the benchmark
log: True
name: ["digits",]
label: "_"
file_type: ".hdf5"
views:
pathf: "/home/baptiste/Documents/Datasets/Digits/"
nice: 0
random_state: 42
nb_cores: 1
full: True
debug: True
add_noise: False
noise_std: 0.0
res_dir: "../results/"
track_tracebacks: False
# All the classification-realted configuration options
multiclass_method: "oneVersusOne"
split: 0.25
nb_folds: 2
nb_class:
classes:
type: ["monoview"]
algos_monoview: ["decision_tree" ]
algos_multiview: ["weighted_linear_early_fusion","weighted_linear_late_fusion"]
stats_iter: 3
metrics:
accuracy_score: {}
f1_score: {}
metric_princ: "accuracy_score"
hps_type: "None"
hps_args:
n_iter: 10
equivalent_draws: False
weighted_linear_early_fusion:
view_weights: null
monoview_classifier_name: "decision_tree"
monoview_classifier_config:
decision_tree:
max_depth: 12
criterion: "gini"
splitter: "best"
weighted_linear_late_fusion:
weights: null
classifiers_names: "decision_tree"
classifier_configs:
decision_tree:
max_depth: 3
criterion: "gini"
splitter: "best"
decision_tree:
max_depth: 3
######################################
## The Monoview Classifier arguments #
######################################
mumbo:
base_estimator__criterion: 'gini'
base_estimator__max_depth: 3
base_estimator__random_state: None
base_estimator__splitter: 'best'
best_view_mode: 'edge'
base_estimator: 'decision_tree'
n_estimators: 10
mucombo:
base_estimator__criterion: 'gini'
base_estimator__max_depth: 3
base_estimator__random_state: None
base_estimator__splitter: 'best'
best_view_mode: 'edge'
base_estimator: 'decision_tree'
n_estimators: 10
#
#random_forest:
# n_estimators: [25]
# max_depth: [3]
# criterion: ["entropy"]
#
#svm_linear:
# C: [1]
#
#svm_rbf:
# C: [1]
#
#svm_poly:
# C: [1]
# degree: [2]
#
#adaboost:
# n_estimators: [50]
# base_estimator: ["DecisionTreeClassifier"]
#
#adaboost_pregen:
# n_estimators: [50]
# base_estimator: ["DecisionTreeClassifier"]
# n_stumps: [1]
#
#adaboost_graalpy:
# n_iterations: [50]
# n_stumps: [1]
#
#
#decision_tree_pregen:
# max_depth: [10]
# criterion: ["gini"]
# splitter: ["best"]
# n_stumps: [1]
#
#sgd:
# loss: ["hinge"]
# penalty: [l2]
# alpha: [0.0001]
#
#knn:
# n_neighbors: [5]
# weights: ["uniform"]
# algorithm: ["auto"]
#
#scm:
# model_type: ["conjunction"]
# max_rules: [10]
# p: [0.1]
#
#scm_pregen:
# model_type: ["conjunction"]
# max_rules: [10]
# p: [0.1]
# n_stumps: [1]
#
#cq_boost:
# mu: [0.01]
# epsilon: [1e-06]
# n_max_iterations: [5]
# n_stumps: [1]
#
#cg_desc:
# n_max_iterations: [10]
# n_stumps: [1]
#
#cb_boost:
# n_max_iterations: [10]
# n_stumps: [1]
#
#lasso:
# alpha: [1]
# max_iter: [2]
#
#gradient_boosting:
# n_estimators: [2]
#
#
#######################################
## The Multiview Classifier arguments #
#######################################
#
#weighted_linear_early_fusion:
# view_weights: [null]
# monoview_classifier_name: ["decision_tree"]
# monoview_classifier_config:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#entropy_fusion:
# classifiers_names: [["decision_tree"]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#disagree_fusion:
# classifiers_names: [["decision_tree"]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#
#double_fault_fusion:
# classifiers_names: [["decision_tree"]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#difficulty_fusion:
# classifiers_names: [["decision_tree"]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#scm_late_fusion:
# classifiers_names: [["decision_tree"]]
# p: 0.1
# max_rules: 10
# model_type: 'conjunction'
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#majority_voting_fusion:
# classifiers_names: [["decision_tree", "decision_tree", "decision_tree", ]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#bayesian_inference_fusion:
# classifiers_names: [["decision_tree", "decision_tree", "decision_tree", ]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#weighted_linear_late_fusion:
# classifiers_names: [["decision_tree", "decision_tree", "decision_tree", ]]
# classifier_configs:
# decision_tree:
# max_depth: [1]
# criterion: ["gini"]
# splitter: ["best"]
#
#mumbo:
# base_estimator: [null]
# n_estimators: [10]
# best_view_mode: ["edge"]
#
#lp_norm_mkl:
# lmbda: [0.1]
# n_loops: [50]
# precision: [0.0001]
# kernel: ["rbf"]
# kernel_params:
# gamma: [0.1]
#
#mvml:
# reg_params: [[0,1]]
# nystrom_param: [1]
# learn_A: [1]
# learn_w: [0]
# n_loops: [6]
# kernel_types: ["rbf_kernel"]
# kernel_configs:
# gamma: [0.1]
......@@ -903,7 +903,7 @@ def exec_classif(arguments):
args["full"],
)
args["name"] = datasetname
splits = execution.gen_splits(dataset_var.get_labels(),
splits = execution.gen_splits(dataset_var,
args["split"],
stats_iter_random_states)
......
......@@ -213,7 +213,7 @@ def gen_splits(dataset_var, split_ratio, stats_iter_random_states):
for ind in test_fold:
if not example_ids[ind].startswith("new_"):
test_indices.append(indices[ind])
splits.append([train_indices, test_indices])
splits.append([train_indices, np.array(test_indices)])
return splits
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment