Skip to content
Snippets Groups Projects
Commit 3b59eabe authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Err in exec

parent cdf348e5
No related branches found
No related tags found
No related merge requests found
Pipeline #4359 failed
......@@ -875,98 +875,93 @@ def exec_classif(arguments):
# if not args["add_noise"]:
# args["noise_std"] = [0.0]
for dataset_name in dataset_list:
noise_results = []
for noise_std in args["noise_std"]:
# noise_results = []
# for noise_std in args["noise_std"]:
directory = execution.init_log_file(dataset_name, args["views"],
args["file_type"],
args["log"], args["debug"],
args["label"],
args["res_dir"],
args)
random_state = execution.init_random_state(args["random_state"],
directory)
stats_iter_random_states = execution.init_stats_iter_random_states(
stats_iter,
random_state)
get_database = execution.get_database_function(dataset_name,
args["file_type"])
dataset_var, labels_dictionary, datasetname = get_database(
args["views"],
args["pathf"], dataset_name,
args["nb_class"],
args["classes"],
random_state,
args["full"],
)
args["name"] = datasetname
splits = execution.gen_splits(dataset_var.get_labels(),
args["split"],
stats_iter_random_states)
# multiclass_labels, labels_combinations, indices_multiclass = multiclass.gen_multiclass_labels(
# dataset_var.get_labels(), multiclass_method, splits)
k_folds = execution.gen_k_folds(stats_iter, args["nb_folds"],
stats_iter_random_states)
dataset_files = dataset.init_multiple_datasets(args["pathf"],
args["name"],
nb_cores)
views, views_indices, all_views = execution.init_views(dataset_var,
args[
"views"])
views_dictionary = dataset_var.get_view_dict()
nb_views = len(views)
nb_class = dataset_var.get_nb_class()
metrics = args["metrics"]
if metrics == "all":
metrics_names = [name for _, name, isPackage
in pkgutil.iter_modules(
[os.path.join(os.path.dirname(
os.path.dirname(os.path.realpath(__file__))),
'metrics')]) if
not isPackage and name not in ["framework",
"log_loss",
"matthews_corrcoef",
"roc_auc_score"]]
metrics = dict((metric_name, {})
for metric_name in metrics_names)
metrics = arange_metrics(metrics, args["metric_princ"])
benchmark = init_benchmark(cl_type, monoview_algos, multiview_algos,
args)
init_kwargs = init_kwargs_func(args, benchmark)
data_base_time = time.time() - start
argument_dictionaries = init_argument_dictionaries(
benchmark, views_dictionary,
nb_class, init_kwargs, hps_method, hps_kwargs)
# argument_dictionaries = initMonoviewExps(benchmark, viewsDictionary,
# NB_CLASS, initKWARGS)
directories = execution.gen_direcorties_names(directory, stats_iter)
benchmark_argument_dictionaries = execution.gen_argument_dictionaries(
labels_dictionary, directories,
splits,
hps_method, args, k_folds,
stats_iter_random_states, metrics,
argument_dictionaries, benchmark,
views, views_indices)
results_mean_stds = exec_benchmark(
nb_cores, stats_iter,
benchmark_argument_dictionaries, directory, metrics,
dataset_var,
args["track_tracebacks"])
# noise_results.append([noise_std, results_mean_stds])
# plot_results_noise(directory, noise_results, metrics[0][0],
# dataset_name)
directory = execution.init_log_file(dataset_name, args["views"],
args["file_type"],
args["log"], args["debug"],
args["label"],
args["res_dir"],
args["add_noise"], noise_std,
args)
random_state = execution.init_random_state(args["random_state"],
directory)
stats_iter_random_states = execution.init_stats_iter_random_states(
stats_iter,
random_state)
get_database = execution.get_database_function(dataset_name,
args["file_type"])
dataset_var, labels_dictionary, datasetname = get_database(
args["views"],
args["pathf"], dataset_name,
args["nb_class"],
args["classes"],
random_state,
args["full"],
args["add_noise"],
noise_std)
args["name"] = datasetname
splits = execution.gen_splits(dataset_var,
args["split"],
stats_iter_random_states)
# multiclass_labels, labels_combinations, indices_multiclass = multiclass.gen_multiclass_labels(
# dataset_var.get_labels(), multiclass_method, splits)
k_folds = execution.gen_k_folds(stats_iter, args["nb_folds"],
stats_iter_random_states)
dataset_files = dataset.init_multiple_datasets(args["pathf"],
args["name"],
nb_cores)
views, views_indices, all_views = execution.init_views(dataset_var,
args[
"views"])
views_dictionary = dataset_var.get_view_dict()
nb_views = len(views)
nb_class = dataset_var.get_nb_class()
metrics = [metric.split(":") for metric in args["metrics"]]
if metrics == [["all"]]:
metrics_names = [name for _, name, isPackage
in pkgutil.iter_modules(
[os.path.join(os.path.dirname(
os.path.dirname(os.path.realpath(__file__))),
'metrics')]) if
not isPackage and name not in ["framework",
"log_loss",
"matthews_corrcoef",
"roc_auc_score"]]
metrics = [[metricName, {}] for metricName in metrics_names]
metrics = arange_metrics(metrics, args["metric_princ"])
# TODO : Metric args
for metricIndex, metric in enumerate(metrics):
if len(metric) == 1:
metrics[metricIndex] = [metric[0], {}]
benchmark = init_benchmark(cl_type, monoview_algos, multiview_algos,
args)
init_kwargs = init_kwargs_func(args, benchmark)
data_base_time = time.time() - start
argument_dictionaries = init_argument_dictionaries(
benchmark, views_dictionary,
nb_class, init_kwargs, hps_method, hps_kwargs)
# argument_dictionaries = initMonoviewExps(benchmark, viewsDictionary,
# NB_CLASS, initKWARGS)
directories = execution.gen_direcorties_names(directory, stats_iter)
benchmark_argument_dictionaries = execution.gen_argument_dictionaries(
labels_dictionary, directories,
splits,
hps_method, args, k_folds,
stats_iter_random_states, metrics,
argument_dictionaries, benchmark,
views, views_indices)
results_mean_stds = exec_benchmark(
nb_cores, stats_iter,
benchmark_argument_dictionaries, directory, metrics,
dataset_var,
args["track_tracebacks"])
noise_results.append([noise_std, results_mean_stds])
plot_results_noise(directory, noise_results, metrics[0][0],
dataset_name)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment